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Computational proofs - logic & deduction

Table : Natural deduction for classical propositional logic

introduction rules elimination rules

ϕ ψ

ϕ ∧ ψ
(∧i )

ϕ ∧ ψ
ϕ

(∧e )

ϕ

ϕ ∨ ψ
(∨i )

ϕ ∨ ψ

[ϕ]u

.

.

.
χ

[ψ]v

.

.

.
χ

χ
(∨e ) u, v

[ϕ]u

.

.

.
ψ

ϕ → ψ
(→i ) u

ϕ ϕ → ψ

ψ
(→e )

[ϕ]u

.

.

.
⊥
¬ϕ (¬i ) u

ϕ ¬ϕ
⊥

(¬e )
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Computational proofs - logic & deduction

Table : Natural deduction for classical predicate logic

introduction rules elimination rules

[¬ϕ]u

.

.

.

⊥
ϕ

(PBC) u

ϕ{x/x0}
∀xϕ

(∀i )
∀xϕ

ϕ{x/t}
(∀e )

where x0 cannot occur free
in any open assumption.

ϕ{x/t}
∃xϕ

(∃i )
∃xϕ

[ϕ{x/x0}]u

.

.

.
χ

χ
(∃e ) u

where x0 cannot occur free in any open
assumption on the right and in χ.
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Mathematical proofs - logic & deduction

Table : Encoding ¬ - Rules of natural deduction for
classical logic

introduction rules elimination rules

[ϕ]u

...
⊥
¬ϕ (¬i ), u

ϕ ¬ϕ
⊥ (¬e)

[ϕ]u

...
⊥

ϕ→ ⊥ (→i ), u
ϕ ϕ→ ⊥
⊥ (→e)
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Mathematical proofs - logic & deduction

Interchangeable rules:

¬¬φ
φ

(¬¬e)
φ ∨ ¬φ

(LEM)

[¬φ]u

...
⊥
φ

(PBC) u
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Mathematical proofs - logic & deduction

Examples of deductions. Assuming (¬¬e), (LEM) holds:

[¬(φ ∨ ¬φ)]x

[¬(φ ∨ ¬φ)]x
[φ]u

φ ∨ ¬φ
(∨i )

⊥
(¬e)

¬φ
(¬i ) u

φ ∨ ¬φ
(∨i )

⊥
(¬e)

¬¬(φ ∨ ¬φ)
(¬i ) x

φ ∨ ¬φ
(¬¬e)

Notation: ¬¬φ ` φ ∨ ¬φ
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Mathematical proofs - logic & deduction

A derivation of Peirce’s law, ((φ→ ψ)→ φ)→ φ:

[¬φ]u
[((φ → ψ) → φ)]x

[¬φ]u

¬ψ → ¬φ
(→i ) ∅

[¬ψ]v

¬φ
(→e )

[φ]w

⊥
(¬e )

ψ
(PBC) v

φ → ψ
(→i ) w

φ
(→e )

⊥
(¬e )

φ
(PBC) u

((φ → ψ) → φ) → φ
(→i ) x

Notation: ` ((φ→ ψ)→ φ)→ φ
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Mathematical proofs - logic & deduction

More examples. A derivation for ¬∀x φ ` ∃x ¬φ
[¬φ{x/x0}]u

∃x ¬φ (∃i ) [¬∃x ¬φ]v

⊥ (¬e)

φ{x/x0}
(PBC) u

∀x φ
(∀i ) ¬∀x φ

⊥ (¬e)

∃x ¬φ (PBC) v

A derivation for ∃x ¬φ ` ¬∀x φ

∃x ¬φ

[¬φ{x/x0}]u
[∀x φ]v

φ{x/x0}
(∀e)

⊥ ¬e

¬∀x φ
(¬i ) v

¬∀x φ
(∃e) u
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Mathematical proofs - logic & deduction

More examples. A derivation for ¬∃x φ ` ∀x ¬φ
[φ{x/x0}]u

∃x φ
(∃i ) ¬∃x φ

⊥ (¬e)

¬φ{x/x0}
(¬i ) u

∀x ¬φ (∀i )

A derivation for ∀x ¬φ ` ¬∃x φ

[ ∃x φ ]u

∀x ¬φ
¬φ{x/x0}

(∀e)
[φ{x/x0} ]v

⊥ (¬e)

⊥ (∃e) v

¬∃x φ
(¬i ) u
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A first naive exercise: propositional rewriting

See the file propARS.pvs in:

www.mat.unb.br/∼ayala/propARS.pvs
or

www.cic.unb.br/∼ayala/propARS.pvs
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Propositional analysis of rewriting properties

Theorem (Knuth-Bendix-Huet CP criterion)

CP joinability implies LC

Lemma (Newman)

SN implies LC if and only if CR

Thus,

Lemma (Knuth-Bendix CP criterion)

CP joinability and SN imply CR.

Where CP, LC, SN and CR abbreviate Critical Pair, Locally
Confluent, Strongly Normalizing and Church-Rosser, as usual.
See exercise propARS.pvs
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The Prototype Verification System - PVS

PVS is a verification system, developed by the SRI International
Computer Science Laboratory, which consists of

1 a specification language:

based on higher-order logic;
a type system based on Church’s simple theory of types
augmented with subtypes and dependent types.

2 an interactive theorem prover:

based on sequent calculus; that is, goals in PVS are sequents
of the form Γ ` ∆, where Γ and ∆ are finite sequences of
formulae, with the usual Gentzen semantics.
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The Prototype Verification System - PVS — Libraries

NASA LaRC PVS library includes

Structures, analysis, algebra, Graphs, Digraphs,
real arithmetic, floating point arithmetic, groups, interval
arithmetic,
linear algebra, measure integration, metric spaces,
orders, probability, series, sets, topology,
term rewriting systems, unification, etc. etc.
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The Prototype Verification System - PVS — Sequent
calculus

Sequents of the form: Γ ` ∆.

Interpretation: from Γ one obtains ∆.
A1,A2, ...,An ` B1,B2, ...,Bm interpreted as
A1 ∧ A2 ∧ ... ∧ An ` B1 ∨ B2 ∨ ... ∨ Bm.

Inference rules

Premises and conclusions are simultaneously constructed:

Γ ` ∆

Γ′ ` ∆′

Goal: ` ∆.
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Sequent calculus in PVS

Representation of A1,A2, ...,An ` B1,B2, ...,Bm:
[-1] A1

.

.

.
[-n] An

|----------
[1] B1

.

.

.
[n] Bn

Proof tree: each node is labelled by a sequent.

A PVS proof command corresponds to the application of an
inference rule.

In general:
Γ ` ∆

Γ1 ` ∆1...Γn ` ∆n
(Rule Name)
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Some inference rules in PVS

Structural:

Γ2 ` ∆2

Γ1 ` ∆1
(W), if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2

Propositional:

Γ,A ` A,∆
(Ax)

Γ,FALSE ` ∆
(FALSE ` )

Γ ` TRUE ,∆
( ` TRUE)
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Some inference rules in PVS

Cut:

Corresponds to the case and lemma proof commands.

Γ ` ∆
Γ,A ` ∆ Γ ` A,∆

(Cut)

Conditional: IF-THEN-ELSE.

Γ, IF(A,B,C ) ` ∆

Γ,A,B ` ∆ Γ,C ` A,∆
(IF ` )

Γ ` IF(A,B,C )∆

Γ,A ` B,∆ Γ ` A,C ,∆
( ` IF)
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Gentzen Calculus

sequents:

Γ ⇒ ∆

↑ ↑
antecedent succedent
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Gentzen Calculus

Table : Rules of deduction à la Gentzen for predicate logic

left rules right rules
Axioms:

Γ, ϕ⇒ ϕ,∆ (Ax) ⊥, Γ⇒ ∆ (L⊥)

Structural rules:

Γ⇒ ∆
ϕ, Γ⇒ ∆

(LWeakening)
Γ⇒ ∆

Γ⇒ ∆, ϕ
(RWeakening)

ϕ,ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆
(LContraction)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(RContraction)
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Gentzen Calculus

Table : Rules of deduction à la Gentzen for predicate logic

left rules right rules
Logical rules:

ϕi∈{1,2}, Γ ⇒ ∆

ϕ1 ∧ ϕ2, Γ ⇒ ∆
(L∧)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ
(R∧)

ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆

ϕ ∨ ψ, Γ ⇒ ∆
(L∨)

Γ ⇒ ∆, ϕi∈{1,2}

Γ ⇒ ∆, ϕ1 ∨ ϕ2
(R∨)

Γ ⇒ ∆, ϕ ψ, Γ ⇒ ∆

ϕ → ψ, Γ ⇒ ∆
(L→)

ϕ, Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ → ψ
(R→)

ϕ[x/t], Γ ⇒ ∆

∀xϕ, Γ ⇒ ∆
(L∀)

Γ ⇒ ∆, ϕ[x/y ]

Γ ⇒ ∆, ∀xϕ
(R∀), y 6∈ fv(Γ,∆)

ϕ[x/y ], Γ ⇒ ∆

∃xϕ, Γ ⇒ ∆
(L∃), y 6∈ fv(Γ,∆)

Γ ⇒ ∆, ϕ[x/t]

Γ ⇒ ∆, ∃xϕ
(R∃)
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Gentzen Calculus

Derivation of the Peirce’s law:

(R→)

(RW )
ϕ⇒ ϕ (Ax)

ϕ⇒ ϕ,ψ

⇒ ϕ,ϕ→ ψ ϕ⇒ ϕ (Ax)

(ϕ→ ψ)→ ϕ⇒ ϕ
(R→)

⇒ ((ϕ→ ψ)→ ϕ)→ ϕ
(L→)
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Gentzen Calculus

Cut rule:

Γ⇒ ∆, ϕ ϕ, Γ′ ⇒ ∆′

ΓΓ′ ⇒ ∆∆′
(Cut)
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Gentzen Calculus

Example of application of (Cut):

⇒ ¬¬(ψ ∨ ¬ψ) ¬¬(ψ ∨ ¬ψ)⇒ ψ ∨ ¬ψ
⇒ ψ ∨ ¬ψ

(Cut)
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Gentzen Calculus

A derivation for the sequent ⇒ ¬¬(ψ ∨ ¬ψ):

ψ ⇒ ψ,⊥ (Ax)

⇒ ψ,¬ψ
(R→)

⇒ ψ ∨ ¬ψ,¬ψ
(R∨)

⇒ ψ ∨ ¬ψ,ψ ∨ ¬ψ
(R∨)

⇒ ψ ∨ ¬ψ
(RC)

ψ ∨ ¬ψ ⇒ ¬¬(ψ ∨ ¬ψ)

⇒ ¬¬(ψ ∨ ¬ψ)
(Cut)



Motivation: formalization - proofs & deduction Formal proofs — Proofs in the Prototype Verification System - PVS Formalizations Conclusions and Future Work

Gentzen Calculus - dealing with negation: c-equivalence

ϕ, Γ⇒ ∆ one-step c-equivalent Γ⇒ ∆,¬ϕ

Γ⇒ ∆, ϕ one-step c-equivalent ¬ϕ, Γ⇒ ∆

The c-equivalence is the equivalence closure of this relation.

Lemma (One-step c-equivalence)

(i) `G ϕ, Γ⇒ ∆, iff `G Γ⇒ ∆,¬ϕ;

(ii) `G ¬ϕ, Γ⇒ ∆, iff `G Γ⇒ ∆, ϕ.
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Gentzen Calculus - dealing with negation

Proof.

(i) Necessity:

ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆,⊥
(RW)

Γ⇒ ∆,¬ϕ
(R→)

Sufficiency:

(LW)
Γ⇒ ∆,¬ϕ
ϕ, Γ⇒ ∆,¬ϕ

(Ax) ϕ, Γ⇒ ∆, ϕ ⊥, ϕ, Γ⇒ ∆ (L⊥)

¬ϕ,ϕ, Γ⇒ ∆
(L→)

ϕ, Γ⇒ ∆
(Cut)



Motivation: formalization - proofs & deduction Formal proofs — Proofs in the Prototype Verification System - PVS Formalizations Conclusions and Future Work

Gentzen Calculus - dealing with negation

(ii) Necessity:

(R→)
(L→)
(R→) (Ax) ϕ, Γ ⇒ ∆, ϕ, ϕ,⊥

Γ ⇒ ∆, ϕ, ϕ,¬ϕ ⊥, Γ ⇒ ∆, ϕ, ϕ (L⊥)

¬¬ϕ, Γ ⇒ ∆, ϕ, ϕ

Γ ⇒ ∆, ϕ,¬¬ϕ → ϕ

¬ϕ, Γ ⇒ ∆

¬ϕ, Γ ⇒ ∆, ϕ,⊥
(RW)

Γ ⇒ ∆, ϕ,¬¬ϕ
(R→)

ϕ, Γ ⇒ ∆, ϕ (Ax)

¬¬ϕ → ϕ, Γ ⇒ ∆, ϕ
(L→)

Γ ⇒ ∆, ϕ
(Cut)

Sufficiency:

Γ⇒ ∆, ϕ ⊥, Γ⇒ ∆

¬ϕ, Γ⇒ ∆
(L→)

2
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Gentzen versus Natural deduction

Theorem (Natural vs deduction à la Gentzen for the classical
logic)

`G Γ⇒ ϕ if, and only if Γ `N ϕ
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Propositional GC vs PVS rules - Regarding Ex.1

(hide) (copy) (flatten) (split) (Skolem) (Inst) (lemma)
(case)

(LW) ×
(LC) ×
(L∧) ×
(L∨) ×
(L→) ×
(RW) ×
(RC) ×
(R∧) ×
(R∨) ×
(R→) ×
(Cut) ×
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A second exercise: predicate rewriting

See the file predTRS.pvs in:

www.mat.unb.br/∼ayala/predTRS.pvs
or

www.cic.unb.br/∼ayala/predTRS.pvs
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Analysis of rewriting properties - Exercise 2

Dealing with variables:

Theorem (Hindley-Rossen Theorem)

Commutation of R1 and R2 and both TRSs are CR imply CR of
R1 ∪ R2.

Thus,

Corollary (H-R application to prove CR)

For all TRS R, the existence of a commutative bipartition into CR
TRSs (say R1 and R2, such that CR(R1) and CR(R2),) implies
CR(R).

See predTRS.pvs
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A third exercise: HO rewriting

See the files predCommutation.pvs and predCommutation.prf in:

www.mat.unb.br/∼ayala/predCommutation.pvs
/ prf

or
www.cic.unb.br/∼ayala/predCommutation.pvs

/ prf
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Analysis of rewriting properties - Exercise 3

Dealing with HO variables, quantifying binary relations, and
induction:

Theorem (CR vr C)

Confluence and CR are equivalent properties

See predCommutation.pvs
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Case Study: rewriting - ARSs • Binary relations

relations closure[T : TYPE] : THEORY
BEGIN

IMPORTING orders@closure ops[T], sets lemmas[T]
...

S, R: VAR pred[[T, T]]
n: VAR nat
p: VAR posnat

...
RC(R): reflexive = union(R, =)
SC(R): symmetric = union(R, converse(R))
TC(R): transitive = IUnion(LAMBDA p: iterate(R, p))
RTC(R): reflexive transitive = IUnion(LAMBDA n: iterate(R, n))
EC(R): equivalence = RTC(SC(R))

...
END relations closure
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Case Study: rewriting - ARSs • Binary relations

change to TC : LEMMA transitive closure(R) = TC(R)

R subset TC :LEMMA subset?(R, TC(R))

TC converse: LEMMA TC(converse(R)) = converse(TC(R))

TC idempotent : LEMMA TC(TC(R)) = TC(R)

TC characterization : LEMMA transitive?(S) ⇔ (S = TC(S))
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Case Study: rewriting - ARSs • Hierarchy

ars

��ss vv (( ++
results commutation

((

modulo equivalence

��

confluence commute

vv ((

results normal form

ss ��

Newman Yokouchi

qq ww
noetherian

((

results confluence

vv
ars terminology

��
relations clousure

��
sets lemmas

Figure : Hierarchy ars
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Case Study: rewriting - ARSs • Newman Lemma

noetherian?(R): bool = well founded?(converse(R))

joinable?(R)(x,y): bool = EXISTS z: RTC(R)(x,z) & RTC(R)(y, z)

locally confluent?(R): bool =
FORALL x, y, z: R(x,y) & R(x,z) ⇒ joinable?(R)(y,z)

confluent?(R): bool =
FORALL x, y, z: RTC(R)(x,y) & RTC(R)(x,z) ⇒ joinable?(R)(y,z)

Newman lemma: THEOREM
noetherian?(R) ⇒ (confluent?(R) ⇔ locally confluent?(R))
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Case Study: rewriting - ARSs • Newman Lemma

yyyy %% %%

$$ $$ zzzz
?

Figure : Proof’s Sketch of Newman Lemma
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Case Study: rewriting - ARSs • Newman Lemma

x

zz $$
x1

zzzz

x2

$$ $$
y

%% %%

z

yyyy
?

Figure : Proof’s Sketch of Newman Lemma
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Case Study: rewriting - ARSs • Newman Lemma

x

yy %%
x1

{{{{ %% %%

L.C . x2

## ##yyyy
y

&& &&

∃u z

xxxx
?

Figure : Proof’s Sketch of Newman Lemma
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Case Study: rewriting - ARSs • Newman Lemma

x

yy $$
x1

yyyy %% %%

x2

$$ $$zzzz
y

$$ $$

I .N. u

zzzz

z

zzzz

∃v

%% %%
?

Figure : Proof’s Sketch of Newman Lemma
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Case Study: rewriting - ARSs • Newman Lemma

x

xx &&
x1

zzzz %% %%

x2

$$ $$yyyy
y

$$ $$

u

yyyy

z

yyyy

v

%% %%

I .N.

∃w

Figure : Proof’s Sketch of Newman Lemma
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Case Study: rewriting - ARSs • Newman Lemma

x

xx &&

zzzz && &&

L.C .

$$ $$yyyyy

$$ $$

I .N.

xxxx

z

yyyy&& &&

I .N.

w

Figure : Proof’s Sketch of Newman Lemma
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Case Study: rewriting - ARSs • Newman Lemma
A few used lemmas:

R subset RC : LEMMA subset?(R, RC(R))
iterate RTC: LEMMA FORALL n : subset?(iterate(R, n), RTC(R))
R is Noet iff TC is: LEMMA noetherian?(R) ⇔ noetherian?(TC(R))
R subset TC :LEMMA subset?(R, TC(R))

noetherian induction: LEMMA
(FORALL (R: noetherian, P):

(FORALL x:
(FORALL y: TC(R)(x, y) ⇒ P(y))
⇒ P(x))

⇒
(FORALL x: P(x)))
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A final exercise: follow Newman’s lemma proof in the
PVS theory ars

1 Change context in PVS through the command
change-context.

2 Accordingly to your instalation of the NASA PVS libraries you
should change context to ../nasalib/TRS.

3 Open the file ../nasalib/TRS/newman yokouchi.pvs .

4 Use the command x-step-proof.

5 By the key combination tab and 1 the proof can be followed
step by step.
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A final exercise: follow other proofs in the PVS theory
trs

1 Critical Pair theorem.
Load the file ../nasalib/TRS/newman yokouchi.pvs .

2 Confluence of orthogonal TRSs.
Load the file ../nasalib/TRS/orthogonality.pvs.

3 Etc.

Final exercice: conclude the proof of the last exercise in the third
list of exercises by applying Noetherian Induction as in the
formalization of Newman Lemma.
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Summary - Gentzen Deductive Rules vs Proof Commads

Table : Structural Left Rules vs Proof Commands

Structural left rules PVS commands

Γ⇒ ∆
ϕ, Γ⇒ ∆

(LWeakening)
ϕ, Γ ` ∆

Γ ` ∆
(hide)

ϕ,ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆
(LContraction)

ϕ, Γ ` ∆

ϕ,ϕ, Γ ` ∆
(Copy)
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Summary - Gentzen Deductive Rules vs Proof Commads

Table : Structural Right Rules vs Proof Commands

Structural right rules PVS commands

Γ⇒ ∆
Γ⇒ ∆, ϕ

(RWeakening)
Γ ` ∆, ϕ

Γ ` ∆
(Hide)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(RContraction)

Γ ` ∆, ϕ

Γ ` ∆, ϕ, ϕ
(Copy)
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Summary - Gentzen Deductive Rules vs Proof Commads
Table : Logical Left Rules vs Proof Commands

left rules PVS commands

ϕ1, ϕ2, Γ ⇒ ∆

ϕ1 ∧ ϕ2, Γ ⇒ ∆
(L∧)

ϕ1 ∧ ϕ2, Γ ` ∆

ϕi∈{1,2}, Γ ` ∆
(Flatten)

ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆

ϕ ∨ ψ, Γ ⇒ ∆
(L∨)

ϕ ∨ ψ, Γ ` ∆

ϕ, Γ ` ∆ ψ, Γ ` ∆
(Split)

Γ ⇒ ∆, ϕ ψ, Γ ⇒ ∆

ϕ → ψ, Γ ⇒ ∆
(L→)

ϕ → ψ, Γ ` ∆

Γ ` ∆, ϕ ψ, Γ ` ∆
(Split)

ϕ[x/t], Γ ⇒ ∆

∀xϕ, Γ ⇒ ∆
(L∀)

∀xϕ, Γ ` ∆

ϕ[x/t], Γ ` ∆
(Instantiate)

ϕ[x/y ], Γ ⇒ ∆

∃xϕ, Γ ⇒ ∆
(L∃), y 6∈ fv(Γ,∆)

∃xϕ, Γ ` ∆

ϕ[x/y ], Γ ` ∆
(Skolem), y 6∈ fv(Γ,∆)
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Summary - Gentzen Deductive Rules vs Proof Commads

Table : Logical Right Rules vs Proof Commands

right rules PVS commands

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ
(R∧)

Γ ` ∆, ϕ ∧ ψ
Γ ` ∆, ϕ Γ ` ∆, ψ

(Split)

Γ ⇒ ∆, ϕi∈{1,2}

Γ ⇒ ∆, ϕ1 ∨ ϕ2
(R∨)

Γ ` ∆, ϕ1 ∨ ϕ2

Γ ` ∆, ϕ1, ϕ2
(Flatten)

ϕ, Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ → ψ
(R→)

Γ ` ∆, ϕ → ψ

ϕ, Γ ` ∆, ψ
(Flatten)

Γ ⇒ ∆, ϕ[x/y ]

Γ ⇒ ∆, ∀xϕ
(R∀), y 6∈ fv(Γ,∆)

Γ ` ∆, ∀xϕ

Γ ` ∆, ϕ[x/y ]
(Skolem), y 6∈ fv(Γ,∆)

Γ ⇒ ∆, ϕ[x/t]

Γ ⇒ ∆, ∃xϕ
(R∃)

Γ ` ∆, ∃xϕ

Γ ` ∆, ϕ[x/t]
(Instantiate)
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Summary - Completing the GC vs PVS rules

(hide) (copy) (flatten) (split) (Skolem) (Inst) (lemma)
(case)

(LW) ×
(LC) ×
(L∧) ×
(L∨) ×
(L→) ×
(L∀) ×
(L∃) ×

(RW) ×
(RC) ×
(R∧) ×
(R∨) ×
(R→) ×
(R∀) ×
(R∃) ×
(Cut) ×
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Exercises — ARSs

xx && xxxx && &&

&& && ≤1xx

IMPLIES

&& && xxxx

Strong Confl implies Confl: COROLLARY
strong confluent?(R) ⇒ confluent?(R)
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Exercises — ARSs

�� ��

// //oooo

����

zzzz $$ $$IFF
$$ $$ zzzz

CR iff Confluent: THEOREM church rosser?(R) ⇔ confluent?(R)

yy %% %% yyyy %% %%

%% %% yyyy
IMPLIES

%% %% yyyy

Semi implies CR: THEOREM semi confluent?(R) ⇒ church rosser?(R)

yy %% yy %% %%

%% %% ≤1yy
IMPLIES

%% %% yyyy

Str Confl implies Semi Confl: THEOREM
strong confluent?(R) ⇒ semi confluent?(R)
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Exercises — ARSs

xx && && xxxx && &&

&& && xxxx

IMPLIES

&& && xxxx

Ex. 1.3.6 [Staples 1975], terese: semi-commutation implies commutation.

semi commute?(R1,R2): bool =
FORALL x, y, z: R1(x,y) & RTC(R2)(x,z) ⇒

EXISTS r: RTC(R2)(y,r) & RTC(R1)(z,r)

commute?(R1,R2): bool =
FORALL x, y, z: RTC(R1)(x,y) & RTC(R2)(x,z) ⇒

EXISTS r: RTC(R2)(y,r) & RTC(R1)(z,r)
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Exercises — ARSs

a
1

vv '' ''
a1

j1

xxxx '' ''

S .C . c

xxxx
b

&& &&

I .H. c1

wwww
d1

semi comm implies comm: LEMMA
semi commute?(R1,R2) ⇒ commute?(R1,R2)
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TRSs • Hierarchy
trs

��
robinson unification

��
critical pairs aux

��

critical pairs

��
oo orthogonality

qq

reduction

��
unification

// rewrite rules

��
replace positions // substitution

��

oo

identity oo // extending
rename

��
compatibility

�� ��
replacement

��
finite sets ars[term]

subterm

�� �� ss
IUnion extra positions

��
oo

��
variables term

��
finite sequences extras

��
term // finite sequences
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Conclusions

Nowadays, computational logic is intensively applied in formal
methods.

In computer sciences, a reasonable training on
“computational” logic should focus on derivation/proof
techniques.

Understanding proof theory is essential to mastering proof
assistants:

to provide mathematical proofs of robustness of computational
systems and
well-accepted quality certificates.
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Future Work
A myriad of elaborated theorems could be formalized.

Termination analysis including more sophisticated termination
semantics such as the one based on the size change
termination principle.

New mechanisms to apply the theory to verify rewriting based
specifications.
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Figure : The Grupo de Teoria da Computação at Universidade de Braśılia
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