MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION 00000000 00

Formal proofs — Proofs in the Prototype Verification System -00000000000 00

Formalization of Rewriting in PVS

Mauricio Ayala-Rincón

Grupo de Teoria da Computação, Universidade de Brasília (UnB)

Brasília D.F., Brazil

Research funded by

Brazilian Research Agencies: CNPq, CAPES and FAPDF

International School on Rewriting ISR 2014 UTFSM Valparaíso, Chile - Aug 25th-29th 2014

André Luiz Galdino

Ana C. Rocha Oliveira

Motivation: formalization - proofs & deduction 00000000 00 Formal proofs — Proofs in the Prototype Verification System -00000000000 00

Talk's Plan

Motivation: formalization - proofs & deduction

Natural Deduction Exercise: propositional rewriting The Prototype Verification System PVS

Formal proofs — Proofs in the Prototype Verification System - PVS

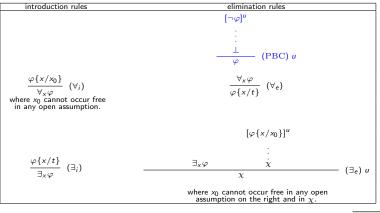
Deduction à la Gentzen Exercise: predicate rewriting

Formalizations

Exercise: more on rewriting Case study: rewriting Exercise: following proofs in the PVS theory trs Exercise: following proofs in the PVS theory trs

Conclusions and Future Work

Computational proofs - logic & deduction

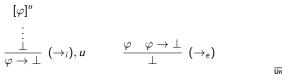

$Table \ : \ Natural \ deduction \ for \ classical \ propositional \ logic$

introduction rules	elimination rules				
$rac{arphi \ \psi}{arphi \wedge \psi} \ (\wedge_i)$	$rac{arphi\wedge\psi}{arphi}$ (/e)				
	$[\varphi]^{\mu}$	$[\psi]^{\nu}$			
	:	÷			
$\frac{\varphi}{\varphi \lor \psi} \ (\lor_i)$	$\begin{array}{c c} \varphi \lor \psi & \chi \\ \hline & \chi \end{array}$	÷ X	$- (\vee_e) u, v$		
$[\varphi]^u$					
$\begin{array}{c} \vdots \\ \psi \\ \overline{\psi} \rightarrow \psi \end{array} (\rightarrow_i) u \\ [\varphi]^u \end{array}$	$\frac{\varphi \varphi \rightarrow \psi}{\psi}$	(\rightarrow_e)			
$[\varphi]^u$					
:					
$\stackrel{:}{\stackrel{\bot}{=}} (\neg_i) u$	$\frac{\varphi \neg \varphi}{\bot}$	(¬ _e)			
· ·			Universidade d		

▲□▶ ▲□▶ ★ □▶ ★ □▶ ★ □ ● ○ Q(

Computational proofs - logic & deduction

Table : NATURAL DEDUCTION FOR CLASSICAL PREDICATE LOGIC

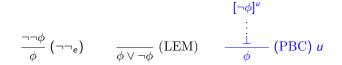

Universidade de Brasília э

(日)、

Mathematical proofs - logic & deduction

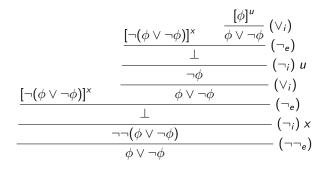
Table : Encoding \neg - Rules of natural deduction for CLASSICAL LOGIC

introduction rules	elimination rules
$[\varphi]^{\prime\prime}$	
· ·	$\varphi \neg \varphi$
$\frac{\perp}{\neg \varphi} (\neg_i), u$	$\frac{1}{\perp}$ (\neg_e)
,	



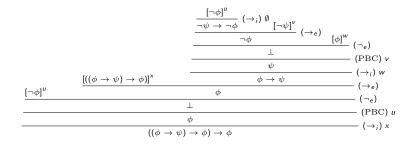
MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION FORMAL PROOFS - PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM

Mathematical proofs - logic & deduction


Interchangeable rules:

Mathematical proofs - logic & deduction

Examples of deductions. Assuming $(\neg \neg_e)$, (LEM) holds:



Notation: $\neg \neg \phi \vdash \phi \lor \neg \phi$

Mathematical proofs - logic & deduction

A derivation of Peirce's law, $((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi$:

Notation: $\vdash ((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi$

 MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION
 FORMAL PROOFS — PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM

 000000000
 00000000000

Mathematical proofs - logic & deduction

More examples. A derivation for $\neg \forall x \phi \vdash \exists x \neg \phi$

$$\frac{\left[\neg\phi\{x/x_{0}\}\right]^{u}}{\frac{\exists x \neg \phi}{(\exists_{i})} \left[\neg \exists x \neg \phi\right]^{v}} (\neg_{e})} \frac{\frac{\bot}{\phi\{x/x_{0}\}} (\operatorname{PBC}) u}{\frac{\forall x \phi}{\forall x \phi} (\forall_{i})} \frac{\neg \forall x \phi}{\neg \forall x \phi} (\neg_{e})$$

A derivation for $\exists x \neg \phi \vdash \neg \forall x \phi$

$$\frac{[\neg \phi\{x/x_0\}]^u \quad \frac{[\forall x \phi]^v}{\phi\{x/x_0\}}}{\frac{\bot}{\neg \forall x \phi} \begin{array}{c} (\forall_e) \\ (\forall_e) \\ \neg e \end{array}} \\ \neg e \\ \neg \forall x \phi \end{array}$$

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION FORMAL PROOFS - PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM

Mathematical proofs - logic & deduction

More examples. A derivation for $\neg \exists x \phi \vdash \forall x \neg \phi$

$$\frac{\frac{\left[\phi\{x/x_{0}\}\right]^{u}}{\exists x \phi} (\exists_{i}) \quad \neg \exists x \phi}{\frac{\bot}{\neg \phi\{x/x_{0}\}} (\neg_{i}) u} (\neg_{e})$$

$$\frac{\frac{\bot}{\neg \phi\{x/x_{0}\}} (\neg_{i}) u}{\forall x \neg \phi} (\forall_{i})$$

A derivation for $\forall x \neg \phi \vdash \neg \exists x \phi$

$$\frac{\left[\exists x \phi\right]^{u}}{\frac{\left[\exists x \phi\right]^{u}}{\neg \phi\{x/x_{0}\}}} \frac{\left[\forall x \neg \phi\right]}{\left[\phi\{x/x_{0}\}\right]^{v}} \left[\phi\{x/x_{0}\}\right]^{v}}{\left[\phi\{x/x_{0}\}\right]^{v}} (\neg_{e})$$

$$\frac{\perp}{\neg \exists x \phi} (\neg_{i}) u} (\exists_{e}) v$$

A first naive exercise: propositional rewriting

See the file propARS.pvs in:

www.mat.unb.br/~ayala/propARS.pvs

or

www.cic.unb.br/~ayala/propARS.pvs

Propositional analysis of rewriting properties

Theorem (Knuth-Bendix-Huet CP criterion) CP joinability implies LC

Lemma (Newman) SN implies LC if and only if CR Thus,

Lemma (Knuth-Bendix CP criterion) CP joinability and SN imply CR. Where CP, LC, SN and CR abbreviate Critical Pair, Locally Confluent, Strongly Normalizing and Church-Rosser, as usual. See exercise propARS.pvs

The Prototype Verification System - PVS

PVS is a verification system, developed by the SRI International Computer Science Laboratory, which consists of

a specification language:

- based on higher-order logic;
- a type system based on Church's simple theory of types augmented with subtypes and dependent types.
- an interactive theorem prover:
 - based on sequent calculus; that is, goals in PVS are sequents of the form $\Gamma \vdash \Delta$, where Γ and Δ are finite sequences of formulae, with the usual Gentzen semantics.

The Prototype Verification System - PVS — Libraries

NASA LaRC PVS library includes

- Structures, analysis, algebra, Graphs, Digraphs,
- real arithmetic, floating point arithmetic, groups, interval arithmetic.
- linear algebra, measure integration, metric spaces,
- orders, probability, series, sets, topology,
- term rewriting systems, unification, etc. etc.

The Prototype Verification System - PVS — Sequent calculus

- Sequents of the form: $\Gamma \vdash \Delta$.
 - Interpretation: from Γ one obtains $\Delta.$
 - $A_1, A_2, ..., A_n \vdash B_1, B_2, ..., B_m$ interpreted as $A_1 \land A_2 \land ... \land A_n \vdash B_1 \lor B_2 \lor ... \lor B_m.$
- Inference rules
 - Premises and conclusions are simultaneously constructed:

$$\frac{\Gamma \vdash \Delta}{\Gamma' \vdash \Delta'}$$

• Goal: $\vdash \Delta$.

Sequent calculus in PVS

- Representation of $A_1, A_2, \dots, A_n \vdash B_1, B_2, \dots, B_m$: [-1] A1 [-n] A_n [1] B₁ [n] B.
- Proof tree: each node is labelled by a sequent.
- A PVS proof command corresponds to the application of an inference rule.
 - In general:

$$\frac{\Gamma \vdash \Delta}{\Gamma_1 \vdash \Delta_1 ... \Gamma_n \vdash \Delta_n}$$
 (Rule Name)

Some inference rules in PVS

• Structural:

$$\boxed{\frac{\Gamma_2 \vdash \Delta_2}{\Gamma_1 \vdash \Delta_1} \ \textbf{(W)}, \text{if } \Gamma_1 \subseteq \Gamma_2 \text{ and } \Delta_1 \subseteq \Delta_2}$$

• Propositional:

$$\boxed{\frac{\Gamma, A \vdash A, \Delta}{}} \text{ (Ax)} \qquad \boxed{\frac{\Gamma, FALSE \vdash \Delta}{}} \text{ (FALSE \vdash)}$$

$$\frac{\Gamma \vdash \textit{TRUE}, \Delta}{} (\vdash \textbf{TRUE})$$

Some inference rules in PVS

- Cut:
 - Corresponds to the case and lemma proof commands.

$$\frac{\Gamma\vdash\Delta}{\Gamma,A\vdash\Delta\quad\Gamma\vdash A,\Delta} \ \textbf{(Cut)}$$

• Conditional: IF-THEN-ELSE.

$$\frac{\Gamma, \mathbf{IF}(A, B, C) \vdash \Delta}{\Gamma, A, B \vdash \Delta \quad \Gamma, C \vdash A, \Delta} (\mathbf{IF} \vdash \mathbf{)}$$

$$\frac{\Gamma \vdash \mathsf{IF}(A, B, C)\Delta}{\Gamma, A \vdash B, \Delta \quad \Gamma \vdash A, C, \Delta} \ \mathsf{(} \vdash \mathsf{IF}\mathsf{)}$$

Gentzen Calculus

sequents:

Gentzen Calculus

Table : RULES OF DEDUCTION à la GENTZEN FOR PREDICATE LOGIC

left rules	right rules			
Axioms:				
$\Gamma, \varphi \Rightarrow \varphi, \Delta$ (Ax)	$\bot, \Gamma \Rightarrow \Delta \ (L_{\bot})$			
Structural rules:				
$\frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} (LW eakening)$	$\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \varphi} (RW \textit{eakening})$			
$\frac{\varphi,\varphi,\Gamma\Rightarrow\Delta}{\varphi,\Gamma\Rightarrow\Delta} (LContraction)$	$\frac{\Gamma \Rightarrow \Delta, \varphi, \varphi}{\Gamma \Rightarrow \Delta, \varphi} \ (\textit{RContraction})$			

Universidade de Brasília ・ロト ・ 日 ト ・ モ ト ・ モ ト æ

ade de Brasília

Gentzen Calculus

Table : RULES OF DEDUCTION à la GENTZEN FOR PREDICATE LOGIC

left rules Logical rules:	right rules
$\frac{\varphi_{i\in\{1,2\}}, \Gamma \Rightarrow \Delta}{\varphi_1 \land \varphi_2, \Gamma \Rightarrow \Delta} (L_{\wedge})$	$\frac{\Gamma \Rightarrow \Delta, \varphi \ \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \land \psi} \ (R_{\wedge})$
$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} \begin{array}{c} \psi, \Gamma \Rightarrow \Delta \\ \varphi \lor \psi, \Gamma \Rightarrow \Delta \end{array} (\mathcal{L}_{\vee})$	$\frac{\Gamma \Rightarrow \Delta, \varphi_{i \in \{1,2\}}}{\Gamma \Rightarrow \Delta, \varphi_1 \vee \varphi_2} \ (R_{\vee})$
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} \ (L_{\rightarrow})$	$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \to \psi} \ (R_{\rightarrow})$
$\frac{\varphi[x/t], \Gamma \Rightarrow \Delta}{\forall_x \varphi, \Gamma \Rightarrow \Delta} (L_{\forall})$	$\frac{\Gamma \Rightarrow \Delta, \varphi[x/y]}{\Gamma \Rightarrow \Delta, \forall_x \varphi} \ (R_{\forall}), y \not\in \operatorname{fr}(\Gamma, \Delta)$
$\frac{\varphi[x/y], \Gamma \Rightarrow \Delta}{\exists_x \varphi, \Gamma \Rightarrow \Delta} \ (L_{\exists}), y \not\in \texttt{fv}(\Gamma, \Delta)$	$\frac{\Gamma \Rightarrow \Delta, \varphi[x/t]}{\Gamma \Rightarrow \Delta, \exists_x \varphi} (R_{\exists})$

Gentzen Calculus

Derivation of the Peirce's law:

$$(RW) \frac{\varphi \Rightarrow \varphi (Ax)}{\varphi \Rightarrow \varphi, \psi} \\ (R_{\rightarrow}) \frac{\varphi \Rightarrow \varphi, \psi}{\varphi \Rightarrow \varphi, \psi} \qquad \varphi \Rightarrow \varphi (Ax) \\ \frac{\varphi \Rightarrow \varphi, \varphi \rightarrow \psi}{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi} (L_{\rightarrow}) \\ \hline \Rightarrow ((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi$$

Gentzen Calculus

Cut rule:

$$\frac{\Gamma \Rightarrow \Delta, \varphi \quad \varphi, \Gamma' \Rightarrow \Delta'}{\Gamma \Gamma' \Rightarrow \Delta \Delta'} \ (Cut)$$

Gentzen Calculus

Example of application of (Cut):

$$\frac{\Rightarrow \neg \neg (\psi \lor \neg \psi) \quad \neg \neg (\psi \lor \neg \psi) \Rightarrow \psi \lor \neg \psi}{\Rightarrow \psi \lor \neg \psi} (Cut)$$

Gentzen Calculus

A derivation for the sequent $\Rightarrow \neg \neg (\psi \lor \neg \psi)$:

$$\frac{\frac{\psi \Rightarrow \psi, \perp (Ax)}{\Rightarrow \psi, \neg \psi} (R_{\rightarrow})}{\frac{\Rightarrow \psi, \neg \psi}{\Rightarrow \psi \lor \neg \psi, \neg \psi} (R_{\lor})} \\
\frac{\frac{\psi \Rightarrow \psi, \neg \psi}{\Rightarrow \psi \lor \neg \psi, \neg \psi} (R_{\lor})}{\frac{\Rightarrow \psi \lor \neg \psi}{\Rightarrow \psi \lor \neg \psi} (RC)} \\
\frac{\psi \lor \neg \psi \Rightarrow \neg \neg (\psi \lor \neg \psi)}{\Rightarrow \neg \neg (\psi \lor \neg \psi)} (Cut)$$

Gentzen Calculus - dealing with negation: c-equivalence

 $\varphi, \Gamma \Rightarrow \Delta$ one-step c-equivalent $\Gamma \Rightarrow \Delta, \neg \varphi$

 $\Gamma \Rightarrow \Delta, \varphi$ one-step c-equivalent $\neg \varphi, \Gamma \Rightarrow \Delta$

The c-equivalence is the equivalence closure of this relation. Lemma (One-step c-equivalence)

(*i*)
$$\vdash_{G} \varphi, \Gamma \Rightarrow \Delta$$
, iff $\vdash_{G} \Gamma \Rightarrow \Delta, \neg \varphi$;
(*ii*) $\vdash_{G} \neg \varphi, \Gamma \Rightarrow \Delta$, iff $\vdash_{G} \Gamma \Rightarrow \Delta, \varphi$.

Gentzen Calculus - dealing with negation

Proof.

(i) Necessity:

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta, \bot} (RW)$$
$$\frac{\varphi, \Gamma \Rightarrow \Delta, \bot}{\Gamma \Rightarrow \Delta, \neg \varphi} (R_{\rightarrow})$$

Sufficiency:

$$(LW) \frac{ \begin{array}{c} \Gamma \Rightarrow \Delta, \neg \varphi \\ \hline \varphi, \Gamma \Rightarrow \Delta, \neg \varphi \end{array}}{ \begin{array}{c} (Ax) \varphi, \Gamma \Rightarrow \Delta, \varphi & \bot, \varphi, \Gamma \Rightarrow \Delta (L_{\bot}) \\ \hline \neg \varphi, \varphi, \Gamma \Rightarrow \Delta \end{array}} (L_{\to}) \\ (CUT) \end{array}$$

Gentzen Calculus - dealing with negation

(ii) Necessity:

$$\begin{pmatrix} \mathbf{R}_{\rightarrow} \\ \mathbf{L}_{\rightarrow} \\ \mathbf{R}_{\rightarrow} \end{pmatrix} \underbrace{\frac{\langle \mathbf{A} \boldsymbol{x} \rangle \varphi, \boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \varphi, \boldsymbol{\perp}}{\boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \varphi, \boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \varphi \left(\boldsymbol{L}_{\perp} \right)}_{\boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \varphi, \varphi} \underbrace{\frac{\neg \varphi, \boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}}{\boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \varphi} \left(\boldsymbol{R}_{\rightarrow} \right)_{\varphi, \boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi}_{\boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \varphi}_{\boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \varphi, \varphi}_{\boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \varphi, \varphi, \varphi, \varphi} \underbrace{\frac{\neg \varphi, \boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}}{\boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi, \varphi, \varphi} \left(\boldsymbol{R}_{\rightarrow} \right)_{\varphi, \boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi}_{\boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi, \varphi}_{\boldsymbol{\Gamma} \Rightarrow \boldsymbol{\Delta}, \varphi}_{\boldsymbol{\Gamma} \Rightarrow \boldsymbol$$

 $\Rightarrow \Delta, \varphi$

Sufficiency:

$$\frac{\Gamma \Rightarrow \Delta, \varphi \quad \bot, \Gamma \Rightarrow \Delta}{\neg \varphi, \Gamma \Rightarrow \Delta} \ (L_{\rightarrow})$$

Universidade de Brasília ・ロト ・聞ト ・ヨト ・ヨト æ

Gentzen versus Natural deduction

Theorem (Natural vs deduction à la Gentzen for the classical logic)

$$\vdash_{\mathcal{G}} \Gamma \Rightarrow \varphi \text{ if, and only if } \Gamma \vdash_{\mathcal{N}} \varphi$$

Propositional GC vs PVS rules - Regarding Ex.1

	(hide)	(copy)	(flatten)	(split)	(Skolem)	(Inst)	(lemma)
							(case)
(LW)	×						
(LC)		×					
(L _^)			×				
(L _∨)				×			
(L_{\rightarrow})				×			
(RW)	×						
(RC)		×					
(R∧)				×			
(R _∨)			×				
(R_{\rightarrow})			×				
(Cut)							×

A second exercise: predicate rewriting

See the file predTRS.pvs in:

www.mat.unb.br/~ayala/predTRS.pvs

or

www.cic.unb.br/~ayala/predTRS.pvs

Analysis of rewriting properties - Exercise 2

Dealing with variables:

Theorem (Hindley-Rossen Theorem)

Commutation of R1 and R2 and both TRSs are CR imply CR of $R1 \cup R2.$

Thus.

Corollary (H-R application to prove CR)

For all TRS R, the existence of a commutative bipartition into CR TRSs (say R1 and R2, such that CR(R1) and CR(R2), implies CR(R).

See predTRS.pvs

A third exercise: HO rewriting

See the files predCommutation.pvs and predCommutation.prf in:

www.mat.unb.br/~ayala/predCommutation.pvs
/ prf
or
 www.cic.unb.br/~ayala/predCommutation.pvs
/ prf

Analysis of rewriting properties - Exercise 3

Dealing with HO variables, quantifying binary relations, and induction:

Theorem (CR vr C)

Confluence and CR are equivalent properties

See predCommutation.pvs

Motivation: formalization - proofs & deduction Formal proofs — Proofs in the Prototype Verification System 000000000 00 00

Case Study: rewriting - ARSs • Binary relations

```
relations_closure[T : TYPE] : THEORY
BEGIN
   IMPORTING orders@closure_ops[T], sets_lemmas[T]
   S, R: VAR pred[[T, T]]
   n: VAR nat
   p: VAR posnat
   RC(R): reflexive = union(R, =)
   SC(R): symmetric = union(R, converse(R))
   TC(R): transitive = IUnion(LAMBDA p: iterate(R, p))
   RTC(R): reflexive_transitive = IUnion(LAMBDA n: iterate(R, n))
   EC(R): equivalence = RTC(SC(R))
END relations_closure
```

Universidade de Brasil

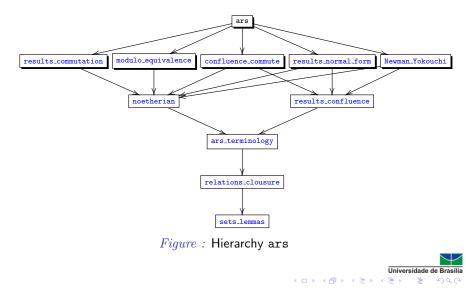
(日) (同) (日) (日)

Motivation: formalization - proofs & deduction Formal proofs — Proofs in the Prototype Verification System 00000000 00
00

Case Study: rewriting - ARSs • Binary relations

change_to_TC : LEMMA transitive_closure(R) = TC(R)

R_subset_TC :LEMMA subset?(R, TC(R))


TC_converse: LEMMA TC(converse(R)) = converse(TC(R))

 $TC_{idempotent}$: LEMMA TC(TC(R)) = TC(R)

TC_characterization : LEMMA transitive?(S) \Leftrightarrow (S = TC(S))

Case Study: rewriting - ARSs • Hierarchy

Case Study: rewriting - ARSs • Newman Lemma

```
noetherian?(R): bool = well_founded?(converse(R))
joinable?(R)(x,y): bool = EXISTS z: RTC(R)(x,z) & RTC(R)(y, z)
locally_confluent?(R): bool =
FORALL x, y, z: R(x,y) & R(x,z) \Rightarrow joinable?(R)(y,z)
confluent?(R): bool =
FORALL x, y, z: RTC(R)(x,y) & RTC(R)(x,z) \Rightarrow joinable?(R)(y,z)
```

Newman_lemma: THEOREM noetherian?(R) \Rightarrow (confluent?(R) \Leftrightarrow locally_confluent?(R))

Case Study: rewriting - ARSs • Newman Lemma



Figure : Proof's Sketch of Newman Lemma

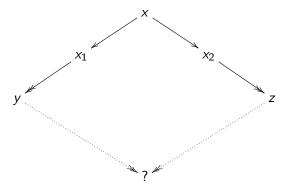


Figure : Proof's Sketch of Newman Lemma

Case Study: rewriting - ARSs • Newman Lemma

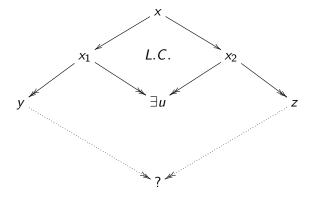


Figure : Proof's Sketch of Newman Lemma

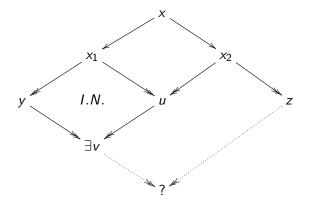


Figure : Proof's Sketch of Newman Lemma

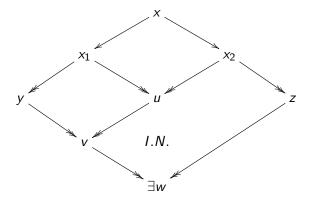


Figure : Proof's Sketch of Newman Lemma

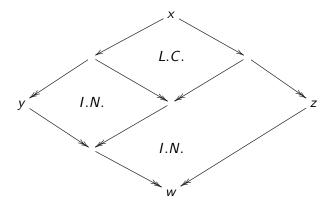


Figure : Proof's Sketch of Newman Lemma

Case Study: rewriting - $ARSs \bullet Newman Lemma$

A few used lemmas:

```
\begin{array}{l} R\_subset\_RC : LEMMA \ subset?(R, \ RC(R)) \\ iterate\_RTC: \ LEMMA \ FORALL \ n : \ subset?(iterate(R, n), \ RTC(R)) \\ R\_is\_Noet\_iff\_TC\_is: \ LEMMA \ noetherian?(R) \Leftrightarrow noetherian?(TC(R)) \\ R\_subset\_TC : LEMMA \ subset?(R, \ TC(R)) \end{array}
```

```
noetherian_induction: LEMMA

(FORALL (R: noetherian, P):

(FORALL x:

(FORALL y: TC(R)(x, y) \Rightarrow P(y))

\Rightarrow P(x))

\Rightarrow

(FORALL x: P(x)))
```

ersidade de Brasília

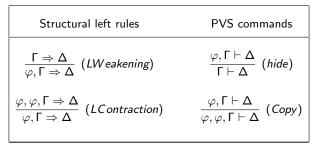
(日) (同) (日) (日)

A final exercise: follow Newman's lemma proof in the PVS theory ars

- Change context in PVS through the command change-context.
- Accordingly to your instalation of the NASA PVS libraries you should change context to .../nasalib/TRS.
- Open the file .../nasalib/TRS/newman_yokouchi.pvs .
- Use the command x-step-proof.
- Sy the key combination tab and 1 the proof can be followed step by step.

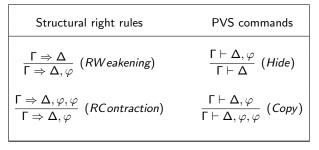
A final exercise: follow other proofs in the PVS theory trs

- Critical Pair theorem. Load the file ../nasalib/TRS/newman_yokouchi.pvs .
- Confluence of orthogonal TRSs. Load the file ../nasalib/TRS/orthogonality.pvs.


8 Etc.

Final exercice: conclude the proof of the last exercise in the third list of exercises by applying Noetherian Induction as in the formalization of Newman Lemma.

Summary - Gentzen Deductive Rules vs Proof Commads


Table : STRUCTURAL LEFT RULES VS PROOF COMMANDS

Summary - Gentzen Deductive Rules vs Proof Commads

Table : STRUCTURAL RIGHT RULES VS PROOF COMMANDS

Summary - Gentzen Deductive Rules vs Proof Commads Table : LOGICAL LEFT RULES VS PROOF COMMANDS

left rules	PVS commands		
$\frac{\varphi_1, \varphi_2, \Gamma \Rightarrow \Delta}{\varphi_1 \land \varphi_2, \Gamma \Rightarrow \Delta} (L_{\wedge})$	$\frac{\varphi_1 \land \varphi_2, \Gamma \vdash \Delta}{\varphi_{i \in \{1,2\}}, \Gamma \vdash \Delta} (\textit{Flatten})$		
$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} \left(\mathcal{L}_{\vee} \right)$	$\frac{\varphi \lor \psi, \Gamma \vdash \Delta}{\varphi, \Gamma \vdash \Delta \ \psi, \Gamma \vdash \Delta} \ (\textit{Split})$		
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} \ (L_{\rightarrow})$	$\frac{\varphi \rightarrow \psi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \varphi \ \psi, \Gamma \vdash \Delta} \ (Split)$		
$\frac{\varphi[x/t], \Gamma \Rightarrow \Delta}{\forall_x \varphi, \Gamma \Rightarrow \Delta} \ (L_{\forall})$	$\frac{\forall_{x}\varphi, \Gamma\vdash \Delta}{\varphi[x/t], \Gamma\vdash \Delta} \ (\textit{Instantiate})$		
$\frac{\varphi[x/y], \Gamma \Rightarrow \Delta}{\exists_x \varphi, \Gamma \Rightarrow \Delta} \ (L_{\exists}), y \notin fv(\Gamma, \Delta)$	$\frac{\exists_{x}\varphi,\Gamma\vdash\Delta}{\varphi[x/y],\Gamma\vdash\Delta} (\textit{Skolem}), y \not\in \texttt{fv}(\Gamma,\Delta)$		

Summary - Gentzen Deductive Rules vs Proof Commads

right rules	PVS commands
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \land \psi} \ (R_{\wedge})$	$\frac{\Gamma\vdash\Delta,\varphi\wedge\psi}{\Gamma\vdash\Delta,\varphi\Gamma\vdash\Delta,\psi} \ \ (\textit{Split})$
$\frac{\Gamma \Rightarrow \Delta, \varphi_{i \in \{1,2\}}}{\Gamma \Rightarrow \Delta, \varphi_1 \lor \varphi_2} \ (R_{\vee})$	$\frac{\Gamma\vdash\Delta,\varphi_{1}\vee\varphi_{2}}{\Gamma\vdash\Delta,\varphi_{1},\varphi_{2}} \ \textit{(Flatten)}$
$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \to \psi} \ (R_{\rightarrow})$	$\frac{\Gamma\vdash\Delta,\varphi\rightarrow\psi}{\varphi,\Gamma\vdash\Delta,\psi} \ \ \textit{(Flatten)}$
$\left \begin{array}{c} \Gamma \Rightarrow \Delta, \varphi[x/y] \\ \overline{\Gamma \Rightarrow \Delta, \forall_x \varphi} \end{array} (R_\forall), y \not\in \mathtt{fv}(\Gamma, \Delta) \end{array} \right $	$\frac{\Gamma\vdash\Delta, \forall_X\varphi}{\Gamma\vdash\Delta, \varphi[x/y]} \ (\textit{Skolem}), y \not\in fv(\Gamma, \Delta)$
$\frac{\Gamma \Rightarrow \Delta, \varphi[x/t]}{\Gamma \Rightarrow \Delta, \exists_x \varphi} \ (R_{\exists})$	$\frac{\Gamma\vdash\Delta,\exists_{x}\varphi}{\Gamma\vdash\Delta,\varphi[x/t]} (\textit{Instantiate})$

Table : LOGICAL RIGHT RULES VS PROOF COMMANDS

Universidade de Brasília

(日) (同) (日) (日)

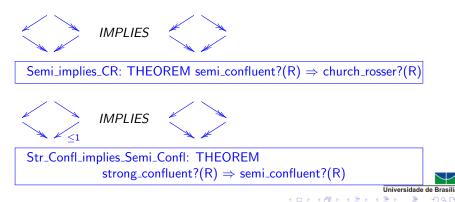
Summary - Completing the GC vs PVS rules

	(hide)	(copy)	(flatten)	(split)	(Skolem)	(Inst)	(lemma)
							(case)
(LW)	×						
(LC)		×					
(L _^)			×				
$(LC) (L_{\wedge}) (L_{\vee}) (L_{\rightarrow}) (L_{\forall}) (L_{\forall}) (L_{\forall}) (L_{\forall}) (L_{\forall}) (L_{\forall}) (L_{\forall}) (L_{\forall}) (L_{\forall}) (L_{\forall})) (L_{\forall}) (L_{\forall}) (L_{\forall})) (L_{\forall}) (L_{\forall})) (L_{\forall}) (L_{\forall})) (L_{\forall})) (L_{\forall}) (L_{\forall})) (L_$				×			
(L_{\rightarrow})				×			
(L∀)						×	
(L∃)					×		
(RW)	×						
(RC)		×					
(R∧)				×			
(R _∨)			×				
(R_{\rightarrow})			×				
$\begin{array}{c} (R_{\rightarrow}) \\ (R_{\forall}) \end{array}$					×		
(R∃)						×	
(Cut)							×

Universidade de Brasília ≣ ▶ ≣ ∽ ९ ୯ ୧

・ロト ・ 日 ト ・ モ ト ・ モ ト

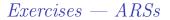
$$Exercises - ARSs$$

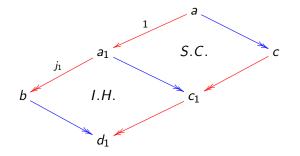


$\label{eq:confl_implies_Confl: COROLLARY} strong_confluent?(R) \Rightarrow confluent?(R)$

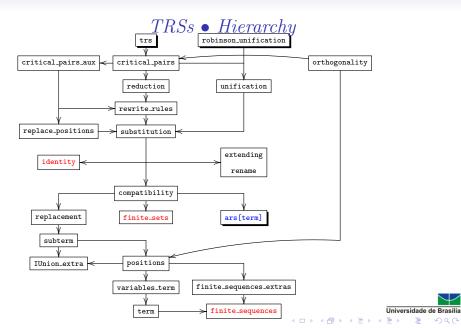
CR_iff_Confluent: THEOREM church_rosser?(R) \Leftrightarrow confluent?(R)


```
Exercises - ARSs
```




Ex. 1.3.6 [Staples 1975], terese: semi-commutation implies commutation.

```
\begin{array}{l} \text{semi\_commute?}(\texttt{R1},\texttt{R2}): \ \text{bool} = \\ \text{FORALL x, y, z: } \texttt{R1}(x,y) \& \texttt{RTC}(\texttt{R2})(x,z) \Rightarrow \\ \text{EXISTS r: } \texttt{RTC}(\texttt{R2})(y,r) \& \texttt{RTC}(\texttt{R1})(z,r) \\ \text{commute?}(\texttt{R1},\texttt{R2}): \ \text{bool} = \\ \text{FORALL x, y, z: } \texttt{RTC}(\texttt{R1})(x,y) \& \texttt{RTC}(\texttt{R2})(x,z) \Rightarrow \\ \text{EXISTS r: } \texttt{RTC}(\texttt{R2})(y,r) \& \texttt{RTC}(\texttt{R1})(z,r) \end{array}
```



(日) (同) (日) (日)

semi_comm_implies_comm: LEMMA semi_commute?(R1,R2) ⇒ commute?(R1,R2)

æ

Conclusions

- Nowadays, computational logic is intensively applied in formal methods.
- In computer sciences, a reasonable training on "computational" logic should focus on derivation/proof techniques.
- Understanding proof theory is essential to mastering proof assistants:
 - to provide mathematical proofs of robustness of computational systems and
 - well-accepted quality certificates.

Future Work

- A myriad of elaborated theorems could be formalized.
- Termination analysis including more sophisticated termination semantics such as the one based on the *size change termination* principle.
- New mechanisms to apply the theory to verify rewriting based specifications.

Motivation: formalization - proofs & deduction | 00000000 00

FORMAL PROOFS — PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM -000000000000 00

Developments of the GTC at UnB - References

Figure : The Grupo de Teoria da Computação at Universidade de Brasília

Motivation: formalization - proofs & deduction 00000000 00 Formal proofs — Proofs in the Prototype Verification System -200000000000 20

Universidade de Brasília

æ

・ロト ・ 日 ト ・ モ ト ・ モ ト

Developments of the GTC at UnB - References

A. B. Avelar, F.L.C. de Moura, A. L. Galdino, and M. Ayala-Rincón.	
Verification of the Completeness of Unification Algorithms à la Robinson. In Proc. 17th Int. Workshop on Logic, Language, Information and Computation (WoLLIC), volume 6188 of Lecture Notes in Computer Science, pages 110–124. Springer, 2010.	
A.B. Avelar, A.L. Galdino, F.L.C. de Moura, and M. Ayala-Rincón. A Formalization of the Theorem of Existence of First-Order Most General Unifiers. In Proceedings 6th Workshop on Logical and Semantic Frameworks with Applications, LSFA'11, volume 81 of EPTCS, pages 63–78, 2011.	
A.B. Avelar, A.L. Galdino, F.L.C. de Moura, and M. Ayala-Rincón. First-order unification in the PVS proof assistant. Logic Journal of the IGPL, 2014.	
 A. L. Galdino and M. Ayala-Rincón. A Formalization of Newman's and Yokouchi Lemmas in a Higher-Order Language. Journal of Formalized Reasoning, 1(1):39–50, 2008. 	
 A. L. Galdino and M. Ayala-Rincón. A Formalization of the Knuth-Bendix(-Huet) Critical Pair Theorem. J. of Automated Reasoning, 45(3):301–325, 2010. 	
 A. C. Rocha Oliveira and M. Ayala-Rincón. Formalizing the confluence of orthogonal rewriting systems. <i>CoRR</i>, abs/1303.7335, 2013. 	