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Computational proofs - logic & deduction

Table : Natural deduction for classical propositional logic

introduction rules elimination rules

ϕ ψ

ϕ ∧ ψ
(∧i )

ϕ ∧ ψ
ϕ

(∧e )

ϕ

ϕ ∨ ψ
(∨i )

ϕ ∨ ψ

[ϕ]u

.

.

.
χ

[ψ]v

.

.

.
χ

χ
(∨e ) u, v

[ϕ]u

.

.

.
ψ

ϕ → ψ
(→i ) u

ϕ ϕ → ψ

ψ
(→e )

[ϕ]u

.

.

.
⊥
¬ϕ (¬i ) u

ϕ ¬ϕ
⊥

(¬e )
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Computational proofs - logic & deduction

Table : Natural deduction for classical predicate logic

introduction rules elimination rules

[¬ϕ]u

.

.

.

⊥
ϕ

(PBC) u

ϕ{x/x0}
∀xϕ

(∀i )
∀xϕ

ϕ{x/t}
(∀e )

where x0 cannot occur free
in any open assumption.

ϕ{x/t}
∃xϕ

(∃i )
∃xϕ

[ϕ{x/x0}]u

.

.

.
χ

χ
(∃e ) u

where x0 cannot occur free in any open
assumption on the right and in χ.
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Mathematical proofs - logic & deduction

Table : Encoding ¬ - Rules of natural deduction for
classical logic

introduction rules elimination rules

[ϕ]u

...
⊥
¬ϕ (¬i ), u

ϕ ¬ϕ
⊥ (¬e)

[ϕ]u

...
⊥

ϕ→ ⊥ (→i ), u
ϕ ϕ→ ⊥
⊥ (→e)



Motivation: formalization - proofs & deduction Formal proofs — Proofs in the Prototype Verification System - PVS Summary Gentzen versus PVS Conclusions and Future Work Research in progress

Mathematical proofs - logic & deduction

Interchangeable rules:

¬¬φ
φ

(¬¬e)
φ ∨ ¬φ

(LEM)

[¬φ]u

...
⊥
φ

(PBC) u
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Mathematical proofs - logic & deduction

Examples of deductions. Assuming (¬¬e), (LEM) holds:

[¬(φ ∨ ¬φ)]x

[¬(φ ∨ ¬φ)]x

[φ]u

φ ∨ ¬φ
(∨i )

⊥
(¬e)

¬φ
(¬i ) u

φ ∨ ¬φ
(∨i )

⊥
(¬e)

¬¬(φ ∨ ¬φ)
(¬i ) x

φ ∨ ¬φ
(¬¬e)

Notation: ¬¬φ ` φ ∨ ¬φ
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Mathematical proofs - logic & deduction

A derivation of Peirce’s law, ((φ→ ψ)→ φ)→ φ:

[¬φ]u
[((φ → ψ) → φ)]x

[¬φ]u

¬ψ → ¬φ
(→i ) ∅

[¬ψ]v

¬φ
(→e )

[φ]w

⊥
(¬e )

ψ
(PBC) v

φ → ψ
(→i ) w

φ
(→e )

⊥
(¬e )

φ
(PBC) u

((φ → ψ) → φ) → φ
(→i ) x

Notation: ` ((φ→ ψ)→ φ)→ φ
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Mathematical proofs - logic & deduction

More examples. A derivation for ¬∀x φ ` ∃x ¬φ
[¬φ{x/x0}]u

∃x ¬φ (∃i ) [¬∃x ¬φ]v

⊥ (¬e)

φ{x/x0}
(PBC) u

∀x φ
(∀i ) ¬∀x φ

⊥ (¬e)

∃x ¬φ (PBC) v

A derivation for ∃x ¬φ ` ¬∀x φ

∃x ¬φ

[¬φ{x/x0}]u

[∀x φ]v

φ{x/x0}
(∀e)

⊥ ¬e

¬∀x φ
(¬i ) v

¬∀x φ
(∃e) u



Motivation: formalization - proofs & deduction Formal proofs — Proofs in the Prototype Verification System - PVS Summary Gentzen versus PVS Conclusions and Future Work Research in progress

Mathematical proofs - logic & deduction

More examples. A derivation for ¬∃x φ ` ∀x ¬φ
[φ{x/x0}]u

∃x φ
(∃i ) ¬∃x φ

⊥ (¬e)

¬φ{x/x0}
(¬i ) u

∀x ¬φ (∀i )

A derivation for ∀x ¬φ ` ¬∃x φ

[ ∃x φ ]u

∀x ¬φ
¬φ{x/x0}

(∀e)
[φ{x/x0} ]v

⊥ (¬e)

⊥ (∃e) v

¬∃x φ
(¬i ) u
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Research Conditions - Exercise 1

Your loud uncle: you’re a smart guy.
Aren’t you? What are you doing?
There are phantastic well-payed em-
ployement opportunities . . . Don’t
waste your time in research!

Your beloved mother-in-law: (since you
are the sole person doing nothing relevant)
Hallo my dear, could you pick me up from
the airport/mall/... Yes, yes just now?
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Research Conditions - Exercise 1

See the file research conditions.pvs in:

www.mat.unb.br/∼ayala/research conditions.pvs

or
www.cic.unb.br/∼ayala/research conditions.pvs
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The Prototype Verification System - PVS

PVS is a verification system, developed by the SRI International
Computer Science Laboratory, which consists of

1 a specification language:

based on higher-order logic;
a type system based on Church’s simple theory of types
augmented with subtypes and dependent types.

2 an interactive theorem prover:

based on sequent calculus; that is, goals in PVS are sequents
of the form Γ ` ∆, where Γ and ∆ are finite sequences of
formulae, with the usual Gentzen semantics.
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The Prototype Verification System - PVS — Libraries

NASA LaRC PVS library
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

Structures, analysis, algebra, Graphs, Digraphs,
real arithmetic, floating point arithmetic, groups, interval
arithmetic,
linear algebra, measure integration, metric spaces,
orders, probability, series, sets, topology,
term rewriting systems, unification, termination etc etc
http://trs.cic.unb.br

André L Galdino Ana CR Oliveira Andréia B Avelar Thiago MF Ramos

Other recommended tutorials
• NASA/NIA PVS class 2012:

http://shemesh.larc.nasa.gov/PVSClass2012
• Formalisation in PVS of Rewriting Properties - ISR 2014:

http://isr2014.inf.utfsm.cl
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The Prototype Verification System - PVS — Sequent
calculus

Sequents of the form: Γ ` ∆.

Interpretation: from Γ one obtains ∆.
A1,A2, ...,An ` B1,B2, ...,Bm interpreted as
A1 ∧ A2 ∧ ... ∧ An ` B1 ∨ B2 ∨ ... ∨ Bm.

Inference rules

Premises and conclusions are simultaneously constructed:

Γ ` ∆

Γ′ ` ∆′

Goal: ` ∆.
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Sequent calculus in PVS

Representation of A1,A2, ...,An ` B1,B2, ...,Bm:
[-1] A1

.

.

.
[-n] An

|----------
[1] B1

.

.

.
[n] Bn

Proof tree: each node is labelled by a sequent.

A PVS proof command corresponds to the application of an
inference rule.

In general:
Γ ` ∆

Γ1 ` ∆1...Γn ` ∆n
(Rule Name)
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Some inference rules in PVS

Structural:

Γ2 ` ∆2

Γ1 ` ∆1
(W), if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2

Propositional:

Γ,A ` A,∆
(Ax)

Γ,FALSE ` ∆
(FALSE ` )

Γ ` TRUE ,∆
( ` TRUE)
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Some inference rules in PVS

Cut:

Corresponds to the case and lemma proof commands.

Γ ` ∆
Γ,A ` ∆ Γ ` A,∆

(Cut)

Conditional: IF-THEN-ELSE.

Γ, IF(A,B,C ) ` ∆

Γ,A,B ` ∆ Γ,C ` A,∆
(IF ` )

Γ ` IF(A,B,C )∆

Γ,A ` B,∆ Γ ` A,C ,∆
( ` IF)
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Gentzen Calculus

sequents:

Γ ⇒ ∆

↑ ↑
antecedent succedent
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Gentzen Calculus

Table : Rules of deduction à la Gentzen for predicate logic
left rules right rules
Axioms:

Γ, ϕ⇒ ϕ,∆ (Ax) ⊥, Γ⇒ ∆ (L⊥)

Structural rules:

Γ⇒ ∆
ϕ, Γ⇒ ∆

(LWeakening)
Γ⇒ ∆

Γ⇒ ∆, ϕ
(RWeakening)

ϕ,ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆
(LContraction)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(RContraction)
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Gentzen Calculus
Table : Rules of deduction à la Gentzen for predicate logic

left rules right rules
Logical rules:

ϕi∈{1,2}, Γ ⇒ ∆

ϕ1 ∧ ϕ2, Γ ⇒ ∆
(L∧)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ
(R∧)

ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆

ϕ ∨ ψ, Γ ⇒ ∆
(L∨)

Γ ⇒ ∆, ϕi∈{1,2}

Γ ⇒ ∆, ϕ1 ∨ ϕ2
(R∨)

Γ ⇒ ∆, ϕ ψ, Γ ⇒ ∆

ϕ → ψ, Γ ⇒ ∆
(L→)

ϕ, Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ → ψ
(R→)

ϕ[x/t], Γ ⇒ ∆

∀xϕ, Γ ⇒ ∆
(L∀)

Γ ⇒ ∆, ϕ[x/y ]

Γ ⇒ ∆, ∀xϕ
(R∀), y 6∈ fv(Γ,∆)

ϕ[x/y ], Γ ⇒ ∆

∃xϕ, Γ ⇒ ∆
(L∃), y 6∈ fv(Γ,∆)

Γ ⇒ ∆, ϕ[x/t]

Γ ⇒ ∆, ∃xϕ
(R∃)
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Gentzen Calculus

Derivation of the Peirce’s law:

(R→)

(RW )
ϕ⇒ ϕ (Ax)

ϕ⇒ ϕ,ψ

⇒ ϕ,ϕ→ ψ ϕ⇒ ϕ (Ax)

(ϕ→ ψ)→ ϕ⇒ ϕ
(R→)

⇒ ((ϕ→ ψ)→ ϕ)→ ϕ
(L→)
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Gentzen Calculus

Cut rule:

Γ⇒ ∆, ϕ ϕ, Γ′ ⇒ ∆′

ΓΓ′ ⇒ ∆∆′ (Cut)
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Gentzen Calculus - dealing with negation: c-equivalence

ϕ, Γ⇒ ∆ one-step c-equivalent Γ⇒ ∆,¬ϕ

Γ⇒ ∆, ϕ one-step c-equivalent ¬ϕ, Γ⇒ ∆

The c-equivalence is the equivalence closure of this relation.

Lemma (One-step c-equivalence)

(i) `G ϕ, Γ⇒ ∆, iff `G Γ⇒ ∆,¬ϕ;

(ii) `G ¬ϕ, Γ⇒ ∆, iff `G Γ⇒ ∆, ϕ.
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Gentzen Calculus - dealing with negation

Proof.

(i) Necessity:

ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆,⊥
(RW)

Γ⇒ ∆,¬ϕ
(R→)

Sufficiency:

(LW)
Γ⇒ ∆,¬ϕ
ϕ, Γ⇒ ∆,¬ϕ

(Ax) ϕ, Γ⇒ ∆, ϕ ⊥, ϕ, Γ⇒ ∆ (L⊥)

¬ϕ,ϕ, Γ⇒ ∆
(L→)

ϕ, Γ⇒ ∆
(Cut)
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Gentzen Calculus - dealing with negation

(ii) Necessity:

(R→)
(L→)
(R→) (Ax) ϕ, Γ ⇒ ∆, ϕ, ϕ,⊥

Γ ⇒ ∆, ϕ, ϕ,¬ϕ ⊥, Γ ⇒ ∆, ϕ, ϕ (L⊥)

¬¬ϕ, Γ ⇒ ∆, ϕ, ϕ

Γ ⇒ ∆, ϕ,¬¬ϕ → ϕ

¬ϕ, Γ ⇒ ∆

¬ϕ, Γ ⇒ ∆, ϕ,⊥
(RW)

Γ ⇒ ∆, ϕ,¬¬ϕ
(R→)

ϕ, Γ ⇒ ∆, ϕ (Ax)

¬¬ϕ → ϕ, Γ ⇒ ∆, ϕ
(L→)

Γ ⇒ ∆, ϕ
(Cut)

Sufficiency:

Γ⇒ ∆, ϕ ⊥, Γ⇒ ∆

¬ϕ, Γ⇒ ∆
(L→)

2
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Gentzen versus Natural deduction

Theorem (Natural vs deduction à la Gentzen for the classical
logic)

`G Γ⇒ ϕ if, and only if Γ `N ϕ
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Analysis of GCD properties - Exercise 2

Dealing with variables:

Definition (GCD)

For all m, n ∈ Z \ (0, 0) the greatest common divisor of m and n,
denoted as gcd(m, n) is the smallest number that divides both m
and n.

Theorem (Improved Euclid Theorem ∼300 BC- Gabriel Lamé
1844)

∀(m, n) : Z \ (0, 0) : GCD(m, n) = GCD(rem(n)(m), n)
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Analysis of GCD properties - Exercise 2

See the file pred gcd.pvs in:

www.mat.unb.br/∼ayala/pred gcd.pvs

or
www.cic.unb.br/∼ayala/pred gcd.pvs
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Summary - Gentzen Deductive Rules vs Proof
Commands

Table : Structural Left Rules vs Proof Commands

Structural left rules PVS commands

Γ⇒ ∆
ϕ, Γ⇒ ∆

(LWeakening)
ϕ, Γ ` ∆

Γ ` ∆
(hide)

ϕ,ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆
(LContraction)

ϕ, Γ ` ∆

ϕ,ϕ, Γ ` ∆
(copy)
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Summary - Gentzen Deductive Rules vs Proof Commads

Table : Structural Right Rules vs Proof Commands

Structural right rules PVS commands

Γ⇒ ∆
Γ⇒ ∆, ϕ

(RWeakening)
Γ ` ∆, ϕ

Γ ` ∆
(hide)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(RContraction)

Γ ` ∆, ϕ

Γ ` ∆, ϕ, ϕ
(copy)
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Summary - Gentzen Deductive Rules vs Proof Commads
Table : Logical Left Rules vs Proof Commands

left rules PVS commands

ϕ1, ϕ2, Γ ⇒ ∆

ϕ1 ∧ ϕ2, Γ ⇒ ∆
(L∧)

ϕ1 ∧ ϕ2, Γ ` ∆

ϕi∈{1,2}, Γ ` ∆
(flatten)

ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆

ϕ ∨ ψ, Γ ⇒ ∆
(L∨)

ϕ ∨ ψ, Γ ` ∆

ϕ, Γ ` ∆ ψ, Γ ` ∆
(split)

Γ ⇒ ∆, ϕ ψ, Γ ⇒ ∆

ϕ → ψ, Γ ⇒ ∆
(L→)

ϕ → ψ, Γ ` ∆

Γ ` ∆, ϕ ψ, Γ ` ∆
(split)

ϕ[x/t], Γ ⇒ ∆

∀xϕ, Γ ⇒ ∆
(L∀)

∀xϕ, Γ ` ∆

ϕ[x/t], Γ ` ∆
(inst)

ϕ[x/y ], Γ ⇒ ∆

∃xϕ, Γ ⇒ ∆
(L∃), y 6∈ fv(Γ,∆)

∃xϕ, Γ ` ∆

ϕ[x/y ], Γ ` ∆
(skolem), y 6∈ fv(Γ,∆)
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Summary - Gentzen Deductive Rules vs Proof Commads

Table : Logical Right Rules vs Proof Commands

right rules PVS commands

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ
(R∧)

Γ ` ∆, ϕ ∧ ψ
Γ ` ∆, ϕ Γ ` ∆, ψ

(split)

Γ ⇒ ∆, ϕi∈{1,2}

Γ ⇒ ∆, ϕ1 ∨ ϕ2
(R∨)

Γ ` ∆, ϕ1 ∨ ϕ2

Γ ` ∆, ϕ1, ϕ2
(flatten)

ϕ, Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ → ψ
(R→)

Γ ` ∆, ϕ → ψ

ϕ, Γ ` ∆, ψ
(flatten)

Γ ⇒ ∆, ϕ[x/y ]

Γ ⇒ ∆, ∀xϕ
(R∀), y 6∈ fv(Γ,∆)

Γ ` ∆, ∀xϕ

Γ ` ∆, ϕ[x/y ]
(skolem), y 6∈ fv(Γ,∆)

Γ ⇒ ∆, ϕ[x/t]

Γ ⇒ ∆, ∃xϕ
(R∃)

Γ ` ∆, ∃xϕ

Γ ` ∆, ϕ[x/t]
(inst)
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Gentzen Calculus inference rules vs PVS proof rules
(hide) (copy) (flatten) (split) (skolem) (inst) (lemma)

(case)

(Ax) × ×
(L⊥) × ×
(LW) ×
(LC) ×
(L∧) ×
(L∨) ×
(L→) ×
(L∀) ×
(L∃) ×

(RW) ×
(RC) ×
(R∧) ×
(R∨) ×
(R→) ×
(R∀) ×
(R∃) ×
(Cut) ×
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GCD algorithm correctness - Exercise 3

See the files gcd.pvs in:

www.mat.unb.br/∼ayala/gcd.pvs / prf

or
www.cic.unb.br/∼ayala/gcd.pvs / prf
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Verification of algorithmic properties - Exercise 3

gcd(n, m) : RECURSIVE nat =
IF abs(n) = abs(m) THEN abs(n)
ELSE IF (n = 0 OR m = 0) THEN abs(n+m)

ELSE IF (abs(n) > abs(m)) THEN
gcd(abs(n)-abs(m), abs(m))

ELSE gcd(abs(m)-abs(n),abs(n))
ENDIF

ENDIF
ENDIF

MEASURE abs(n)+abs(m)

It works?
Does this specification compute correctly the ‘‘GCD’’ of the
definition?
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Verification of algorithmic properties - Exercise 3

gcd is correct : COROLLARY
(m /= 0 OR n /=0) =>

divides(gcd(m,n),m) AND
divides(gcd(m,n),n) AND
FORALL (k) : (divides(k,m) AND divides(k,n) =>

k <= gcd(m,n))
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Conclusions

Nowadays, computational logic is intensively applied in formal
methods.

In computer sciences, a reasonable training on
“computational” logic should focus on derivation/proof
techniques.

Understanding proof theory is essential to mastering proof
assistants:

to provide mathematical proofs of robustness of computational
systems and
well-accepted quality certificates.

The deductive framework - proof assistant - is important but
irrelevant.
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Future Work
A myriad of elaborated mathematical theorems are to be
formalized.

Termination analysis including more sophisticated termination
semantics such as the one based on the size change
termination principle.

New mechanisms to apply the theory to verify rewriting based
specifications.
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Developments of the GTC at UnB - References

Figure : The Grupo de Teoria da Computação at Universidade de Braśılia
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The Abstract Redution Systems Hierarchy - ars

ars

��ss vv (( ++
results commutation

((

modulo equivalence

��

confluence commute

vv ((

results normal form

ss ��

Newman Yokouchi

qq vv
noetherian

((

results confluence

vv
ars terminology

��
relations clousure

��

[NY-JFR2008]

sets lemmas

Figure : Hierarchy ars
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The Term Rewriting Systems Hierarchy - trs
trs

��
robinson unification

��
critical pairs aux

��

critical pairs

��

oo orthogonality
qq

reduction

��
unification [CP-JAR2010]

// rewrite rules

��
replace positions // substitution

��

oo
[U-IGPl2014]

identity oo // extending
rename

��
compatibility

�� ��
[CO-EP2013]

replacement

��
finite sets ars[term]

subterm

�� �� ss
IUnion extra positions

��

oo

��
nominal [NU-LSFA2015]

variables term

��
finite sequences extras

��
term // finite sequences
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