Formalization of Rewriting in PVS

Mauricio Ayala-Rincón

Grupo de Teoria da Computação, Universidade de Brasília (UnB)

Research funded by CNPq, CAPES and FAPDF

Nat@Logic 2015 UFRN Natal, Brazil - Aug 31st & Sep 01st 2015

Galdino

Ana CR Oliveira

Andréia B Avelar

Thiago MF Moura Ramos

Rêgo

Motivation: formalization - proofs & deduction 00000000 00 Formal proofs — Proofs in the Prototype Verification System -200000000 20

Talk's Plan

Motivation: formalization - proofs & deduction

Natural Deduction Exercise 1: propositional logic The Prototype Verification System PVS

Formal proofs — Proofs in the Prototype Verification System - PVS

Deduction à *la* Gentzen Exercise 2: deduction in the predicate logic

Summary Gentzen versus PVS Exercise 3: correctness of algorithms

Conclusions and Future Work

Research in progress

0000000

Computational proofs - logic & deduction

Table : NATURAL DEDUCTION FOR CLASSICAL PROPOSITIONAL LOGIC

introduction rules	elimination rules	
$rac{arphi^{}\psi}{arphi^{}\wedge\psi}$ (\wedge_i)	$rac{arphi\wedge\psi}{arphi}~(\wedge_e)$	
	$[\varphi]^u$ $[\psi]^v$	
φ	$\varphi \lor \psi \qquad \dot{\chi} \qquad \dot{\chi}$	
$\overline{\varphi \lor \psi} (\lor_i)$	<u> </u>	—— (∨ _e) u, v
$[\varphi]^u$		
$\frac{\frac{1}{\psi}}{\varphi \to \psi} (\to_i) u$	$rac{arphi arphi ightarrow \psi}{\psi} \ \ (ightarrow_e)$	
$[\varphi]^u$		
$\frac{\frac{1}{2}}{\neg \varphi} (\neg_i) u$	$rac{arphi \neg arphi}{\perp} \ (\neg_e)$	

0000000

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION FORMAL PROOFS - PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM

Computational proofs - logic & deduction

Table : NATURAL DEDUCTION FOR CLASSICAL PREDICATE LOGIC

introduction rules	elimination rules	
	$[\neg \varphi]^u$	
	$\frac{\perp}{\varphi}$ (PBC) <i>u</i>	
$ \begin{array}{c} \frac{\varphi\{x/x_0\}}{\forall_x \varphi} \ (\forall_i) \\ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{\forall_x \varphi}{\varphi\{x/t\}} \ (\forall_e)$	
	$[\varphi\{x/x_0\}]^u$	
	:	
$\frac{\varphi\{x/t\}}{\neg} (\exists_i)$	$\exists_x \varphi \qquad \dot{\chi}$	— (∃ _e) u
$\exists_X \varphi$	X	,
	where x_0 cannot occur free in any oper assumption on the right and in χ .	1

Mathematical proofs - logic & deduction

Table : Encoding \neg - Rules of natural deduction for CLASSICAL LOGIC

introduction rules	elimination rules
$[\varphi]^{\prime\prime}$	
$\stackrel{\vdots}{\stackrel{\bot}{\neg\varphi}}(\neg_i), u$	$\frac{\varphi \neg \varphi}{\bot} (\neg_e)$

00000000

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION FORMAL PROOFS - PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM

Mathematical proofs - logic \mathcal{E} deduction

Interchangeable rules:

Motivation: formalization - proofs & deduction 000000000 $_{\odot \odot}$

Mathematical proofs - logic & deduction

Examples of deductions. Assuming $(\neg \neg_e)$, (LEM) holds:

Notation: $\neg \neg \phi \vdash \phi \lor \neg \phi$

00000000

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION FORMAL PROOFS - PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM

Mathematical proofs - logic & deduction

A derivation of Peirce's law, $((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi$:

Notation: $\vdash ((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi$

00000000

Mathematical proofs - logic \mathcal{E} deduction

More examples. A derivation for $\neg \forall x \phi \vdash \exists x \neg \phi$

$$\frac{\frac{[\neg\phi\{x/x_0\}]^u}{\exists x \neg \phi} (\exists_i) \quad [\neg\exists x \neg\phi]^v}{\frac{\frac{\bot}{\phi\{x/x_0\}} (\operatorname{PBC}) u}{(\forall_i)}} (\neg_e) \\ \frac{\frac{\varphi\{x/x_0\}}{\forall x \phi} (\forall_i) \quad \neg\forall x \phi}{\frac{\varphi\{x \neg \phi}{\exists x \neg \phi} (\operatorname{PBC}) v} (\neg_e)$$

A derivation for $\exists x \neg \phi \vdash \neg \forall x \phi$

$$\frac{[\neg\phi\{x/x_0\}]^u \quad \frac{[\forall x \phi]^v}{\phi\{x/x_0\}}}{\frac{\bot}{\neg\forall x \phi} \quad (\neg_i) v} \quad \neg e} \frac{\exists x \neg \phi \quad \frac{\bot}{\neg\forall x \phi} \quad (\neg_i) v}{(\exists_e) \ u}$$

Mathematical proofs - logic \mathcal{E} deduction

More examples. A derivation for $\neg \exists x \phi \vdash \forall x \neg \phi$

$$\frac{\frac{\left[\phi\{x/x_{0}\}\right]^{u}}{\exists x \phi} (\exists_{i}) \quad \neg \exists x \phi}{\frac{\bot}{\neg \phi\{x/x_{0}\}} (\neg_{i}) u} (\neg_{e})}$$

$$\frac{\frac{\bot}{\neg \phi\{x/x_{0}\}} (\neg_{i}) u}{\forall x \neg \phi} (\forall_{i})$$

A derivation for $\forall x \neg \phi \vdash \neg \exists x \phi$

$$\frac{\left[\exists x \phi\right]^{u}}{\frac{-\forall x \neg \phi}{\neg \phi\{x/x_{0}\}}} \stackrel{(\forall_{e})}{[\phi\{x/x_{0}\}]^{v}} (\neg_{e})}{\frac{\bot}{\neg \exists x \phi}} (\neg_{i}) u \qquad (\exists_{e}) v$$

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION 00000000 •0 MAL PROOFS — PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM

Research Conditions - Exercise 1

Your loud uncle: you're a *smart* guy. Aren't you? What are you doing? There are phantastic well-payed employement opportunities . . . Don't waste your time in research!

MONSTER in-LAW

www.MONITOLINE.Weard L. MEN 1500 CIVEND

Your beloved mother-in-law: (since you are the sole person doing nothing relevant) Hallo my dear, could you pick me up from the airport/mall/... Yes, yes just now?

0

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION FORMAL PROOFS - PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM

Research Conditions - Exercise 1

See the file research_conditions.pvs in:

```
www.mat.unb.br/~ayala/research_conditions.pvs
or
     www.cic.unb.br/~ayala/research_conditions.pvs
```


The Prototype Verification System - PVS

PVS is a verification system, developed by the SRI International Computer Science Laboratory, which consists of

a specification language:

- based on *higher-order logic*;
- a type system based on Church's simple theory of types augmented with *subtypes* and *dependent types*.
- an interactive theorem prover:
 - based on sequent calculus; that is, goals in PVS are sequents of the form Γ ⊢ Δ, where Γ and Δ are finite sequences of formulae, with the usual Gentzen semantics.

The Prototype Verification System - PVS — Libraries

NASA LaRC PVS library

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

- Structures, analysis, algebra, Graphs, Digraphs,
- real arithmetic, floating point arithmetic, groups, interval arithmetic.
- linear algebra, measure integration, metric spaces,
- orders, probability, series, sets, topology,
- term rewriting systems, unification, termination etc etc http://trs.cic.unb.br

André L Galdino

Ana CR Oliveira

Andréia B Avela

Thiago MF Ramos

(日)、

- Other recommended tutorials

 - NASA/NIA PVS class 2012: http://shemesh.larc.nasa.gov/PVSClass2012
 Formalisation in PVS of Rewriting Properties ISR 2014: http://isr2014.inf.utfsm.cl

Motivation: formalization - proofs & deduction 00000000 00

The Prototype Verification System - PVS — Sequent calculus

- Sequents of the form: $\Gamma \vdash \Delta$.
 - Interpretation: from Γ one obtains $\Delta.$
 - $A_1, A_2, ..., A_n \vdash B_1, B_2, ..., B_m$ interpreted as $A_1 \land A_2 \land ... \land A_n \vdash B_1 \lor B_2 \lor ... \lor B_m.$
- Inference rules
 - Premises and conclusions are simultaneously constructed:

$$\frac{\Gamma \vdash \Delta}{\Gamma' \vdash \Delta'}$$

• Goal: $\vdash \Delta$.

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION 00000000 00 Formal proofs — Proofs in the Prototype Verification System - $\overset{\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ}{\sim\circ\circ}$

Sequent calculus in PVS

• Representation of $A_1, A_2, ..., A_n \vdash B_1, B_2, ..., B_m$:

- Proof tree: each node is labelled by a sequent.
- A PVS proof command corresponds to the application of an inference rule.

 $\begin{bmatrix} -n \end{bmatrix} A_n$ $\begin{bmatrix} 1 \end{bmatrix} B_1$

 $\begin{bmatrix} n \end{bmatrix} B_n$

• In general:

$$\frac{\Gamma \vdash \Delta}{\Gamma_1 \vdash \Delta_1 ... \Gamma_n \vdash \Delta_n}$$
 (Rule Name)

Some inference rules in PVS

• Structural:

$$\label{eq:relation} \boxed{\frac{\Gamma_2\vdash\Delta_2}{\Gamma_1\vdash\Delta_1}} \ \textbf{(W)}, \text{if } \Gamma_1\subseteq\Gamma_2 \text{ and } \Delta_1\subseteq\Delta_2$$

• Propositional:

$$\boxed{\frac{\Gamma, A \vdash A, \Delta}{} (Ax)} \qquad \boxed{\frac{\Gamma, FALSE \vdash \Delta}{} (FALSE \vdash)}$$

$$\frac{\Gamma \vdash TRUE, \Delta}{} (\vdash \mathsf{TRUE})$$

Some inference rules in PVS

- Cut:
 - Corresponds to the case and lemma proof commands.

$$\frac{\Gamma\vdash\Delta}{\Gamma, A\vdash\Delta\quad \Gamma\vdash A, \Delta} \ \textbf{(Cut)}$$

• Conditional: IF-THEN-ELSE.

$$\frac{\Gamma, \mathsf{IF}(A, B, C) \vdash \Delta}{\Gamma, A, B \vdash \Delta \quad \Gamma, C \vdash A, \Delta} (\mathsf{IF} \vdash)$$

$$\frac{\Gamma \vdash \mathsf{IF}(A, B, C)\Delta}{\Gamma, A \vdash B, \Delta \quad \Gamma \vdash A, C, \Delta} \ (\vdash \mathsf{IF})$$

Gentzen Calculus

sequents:

Gentzen Calculus

Table : RULES OF DEDUCTION à la GENTZEN FOR PREDICATE LOGIC

left_rules	right rules
Axioms:	
$\Gamma, \varphi \Rightarrow \varphi, \Delta$ (Ax)	$\bot, \Gamma \Rightarrow \Delta$ (L_{\bot})
Structural rules:	
$\frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \ (LW eakening)$	$rac{\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,arphi}$ (RW eakening)
$\frac{\varphi, \varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} $ (<i>LContraction</i>)	$\frac{\Gamma \Rightarrow \Delta, \varphi, \varphi}{\Gamma \Rightarrow \Delta, \varphi} (RContraction)$

Gentzen Calculus

Table : RULES OF DEDUCTION à la GENTZEN FOR PREDICATE LOGIC

left rules	right rules
Logical rules: $\frac{\varphi_{i \in \{1,2\}}, \Gamma \Rightarrow \Delta}{\varphi_1 \land \varphi_2, \Gamma \Rightarrow \Delta} (L_{\wedge})$	$\frac{\Gamma \Rightarrow \Delta, \varphi \ \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \land \psi} \ (R_{\wedge})$
$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} (L_{\vee})$	$\frac{\Gamma \Rightarrow \Delta, \varphi_{i \in \{1,2\}}}{\Gamma \Rightarrow \Delta, \varphi_1 \lor \varphi_2} \ (R_{\lor})$
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} \ (L_{\rightarrow})$	$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \rightarrow \psi} (R_{\rightarrow})$
$\frac{\varphi[x/t], \Gamma \Rightarrow \Delta}{\forall_x \varphi, \Gamma \Rightarrow \Delta} (L_{\forall})$	$\frac{\Gamma \Rightarrow \Delta, \varphi[x/y]}{\Gamma \Rightarrow \Delta, \forall_x \varphi} \ (R_\forall), y \not\in \mathtt{fv}(\Gamma, \Delta)$
$\frac{\varphi[x/y], \Gamma \Rightarrow \Delta}{\exists_x \varphi, \Gamma \Rightarrow \Delta} \ (L_{\exists}), y \not\in fv(\Gamma, \Delta)$	$\frac{\Gamma \Rightarrow \Delta, \varphi[x/t]}{\Gamma \Rightarrow \Delta, \exists_x \varphi} \ (R_{\exists})$

Gentzen Calculus

Derivation of the Peirce's law:

$$(RW) \frac{\varphi \Rightarrow \varphi (Ax)}{\varphi \Rightarrow \varphi, \psi} \\ (R_{\rightarrow}) \frac{\varphi \Rightarrow \varphi, \psi}{\varphi \Rightarrow \varphi, \psi} \qquad \varphi \Rightarrow \varphi (Ax) \\ \frac{\varphi \Rightarrow \varphi, \varphi \rightarrow \psi}{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi} (R_{\rightarrow}) \\ \frac{\varphi \Rightarrow \psi}{\varphi \Rightarrow \psi} (L_{\rightarrow})$$

Gentzen Calculus

Cut rule:

$$\boxed{\frac{\Gamma \Rightarrow \Delta, \varphi \quad \varphi, \Gamma' \Rightarrow \Delta'}{\Gamma \Gamma' \Rightarrow \Delta \Delta'} (Cut)}$$

Gentzen Calculus - dealing with negation: c-equivalence

 $\varphi, \Gamma \Rightarrow \Delta$ one-step c-equivalent $\Gamma \Rightarrow \Delta, \neg \varphi$

 $\Gamma \Rightarrow \Delta, \varphi$ one-step c-equivalent $\neg \varphi, \Gamma \Rightarrow \Delta$

The c-equivalence is the equivalence closure of this relation.

Lemma (One-step c-equivalence)

(*i*)
$$\vdash_{G} \varphi, \Gamma \Rightarrow \Delta$$
, iff $\vdash_{G} \Gamma \Rightarrow \Delta, \neg \varphi$;
(*ii*) $\vdash_{G} \neg \varphi, \Gamma \Rightarrow \Delta$, iff $\vdash_{G} \Gamma \Rightarrow \Delta, \varphi$.

Gentzen Calculus - dealing with negation

Proof.

(i) Necessity:

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta, \bot} (RW)$$
$$\frac{\varphi, \Gamma \Rightarrow \Delta, \bot}{\Gamma \Rightarrow \Delta, \neg \varphi} (R_{\rightarrow})$$

Sufficiency:

$$(LW) \frac{\Gamma \Rightarrow \Delta, \neg \varphi}{\frac{\varphi, \Gamma \Rightarrow \Delta, \neg \varphi}{\varphi, \Gamma \Rightarrow \Delta}} \frac{(Ax) \varphi, \Gamma \Rightarrow \Delta, \varphi \perp, \varphi, \Gamma \Rightarrow \Delta (L_{\perp})}{\neg \varphi, \varphi, \Gamma \Rightarrow \Delta} (L_{\rightarrow})$$
(CUT)

Gentzen Calculus - dealing with negation

(ii) Necessity:

$$\begin{pmatrix} (\mathbf{R}_{\rightarrow}) \\ (\mathbf{L}_{\rightarrow}) \\ (\mathbf{R}_{\rightarrow}) \\ \hline \begin{matrix} \frac{(\mathbf{A}x) \, \varphi, \, \Gamma \Rightarrow \, \Delta, \, \varphi, \, \varphi, \, \bot}{\Gamma \Rightarrow \, \Delta, \, \varphi, \, \varphi, \, \varphi} \\ \frac{\neg \varphi, \, \Gamma \Rightarrow \, \Delta}{\Gamma \Rightarrow \, \Delta, \, \varphi, \, \varphi, \, \varphi} \begin{pmatrix} \mathbf{R}W \\ \neg \varphi, \, \Gamma \Rightarrow \, \Delta, \, \varphi, \, \bot} \\ \hline \Gamma \Rightarrow \, \Delta, \, \varphi, \, \neg \neg \varphi \end{matrix} \begin{pmatrix} \mathbf{R}W \\ \mathbf{R}_{\rightarrow} \end{pmatrix}_{\varphi, \, \Gamma \Rightarrow \, \Delta, \, \varphi} (\mathbf{A}x) \\ \frac{\neg \varphi, \, \Gamma \Rightarrow \, \Delta, \, \varphi, \, \bot}{\Gamma \Rightarrow \, \Delta, \, \varphi, \, \bot} \begin{pmatrix} \mathbf{R}W \\ \mathbf{R}_{\rightarrow} \end{pmatrix}_{\varphi, \, \Gamma \Rightarrow \, \Delta, \, \varphi} (\mathbf{A}x) \\ \hline \neg \varphi \rightarrow \varphi, \, \Gamma \Rightarrow \, \Delta, \, \varphi \end{matrix}$$

 $\Gamma \Rightarrow \Delta, \varphi$

Sufficiency:

$$\frac{\Gamma \Rightarrow \Delta, \varphi \quad \bot, \Gamma \Rightarrow \Delta}{\neg \varphi, \Gamma \Rightarrow \Delta} \ (L_{\rightarrow})$$

Universidade de Brasília ・ロト ・ 日 ト ・ モ ト ・ モ ト æ

Gentzen versus Natural deduction

Theorem (Natural vs deduction à la Gentzen for the classical logic)

$$\vdash_{\mathsf{G}} \Gamma \Rightarrow \varphi \text{ if, and only if } \Gamma \vdash_{\mathsf{N}} \varphi$$

Analysis of GCD properties - Exercise 2

Dealing with variables:

Definition (GCD)

For all $m, n \in \mathbb{Z} \setminus (0, 0)$ the greatest common divisor of m and n, denoted as gcd(m, n) is the smallest number that divides both m and n.

Theorem (Improved Euclid Theorem ~ 300 BC- Gabriel Lamé 1844)

 $\forall (m,n): \mathbb{Z} \setminus (0,0): \textit{GCD}(m,n) = \textit{GCD}(\textit{rem}(n)(m),n)$


```
Analysis of GCD properties - Exercise 2
```

See the file pred_gcd.pvs in:

www.mat.unb.br/~ayala/pred_gcd.pvs

or

www.cic.unb.br/~ayala/pred_gcd.pvs

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTIO 00000000 00 DRMAL PROOFS — PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM

Summary - Gentzen Deductive Rules vs Proof Commands

Table : STRUCTURAL LEFT RULES VS PROOF COMMANDS

Structural left rules	PVS commands
$\frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \ (LW eakening)$	$rac{arphi, \Gamma dash \Delta}{\Gamma dash \Delta}$ (hide)
$\frac{\varphi, \varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \ (LContraction)$	$\frac{\varphi, \Gamma \vdash \Delta}{\varphi, \varphi, \Gamma \vdash \Delta} \ (\textit{copy})$

Motivation: formalization - proofs & deduction Formal proofs — Proofs in the Prototype Verification System 00000000 00 00

Summary - Gentzen Deductive Rules vs Proof Commads

Table : STRUCTURAL RIGHT RULES VS PROOF COMMANDS

Structural right rules	PVS commands
$\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \varphi} \ (RW \textit{eakening})$	$\frac{{\Gamma}\vdash{\boldsymbol{\Delta}},\varphi}{{\Gamma}\vdash{\boldsymbol{\Delta}}} \ (\textit{hide})$
$\frac{\Gamma \Rightarrow \Delta, \varphi, \varphi}{\Gamma \Rightarrow \Delta, \varphi} \ (\textit{RContraction})$	$\frac{{\displaystyle {\Gamma}\vdash \Delta, \varphi}}{{\displaystyle {\Gamma}\vdash \Delta, \varphi, \varphi}} ({\it copy})$

Summary - Gentzen Deductive Rules vs Proof Commads Table : LOGICAL LEFT RULES VS PROOF COMMANDS

left rules	PVS commands
$\frac{\varphi_1, \varphi_2, \Gamma \Rightarrow \Delta}{\varphi_1 \land \varphi_2, \Gamma \Rightarrow \Delta} (L_{\wedge})$	$\frac{\varphi_1 \land \varphi_2, \Gamma \vdash \Delta}{\varphi_{i \in \{1,2\}}, \Gamma \vdash \Delta} (\textit{flatten})$
$\frac{\varphi, \Gamma \Rightarrow \Delta \ \psi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} \ (L_{\vee})$	$\frac{\varphi \lor \psi, \Gamma \vdash \Delta}{\varphi, \Gamma \vdash \Delta, \psi, \Gamma \vdash \Delta} (\textit{split})$
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} \ (\mathcal{L}_{\rightarrow})$	$\frac{\varphi \rightarrow \psi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \varphi \ \psi, \Gamma \vdash \Delta} \ (\textit{split})$
$\frac{\varphi[x/t], \Gamma \Rightarrow \Delta}{\forall_x \varphi, \Gamma \Rightarrow \Delta} \ (L_{\forall})$	$\frac{\forall_x \varphi, \Gamma \vdash \Delta}{\varphi[x/t], \Gamma \vdash \Delta} (inst)$
$\frac{\varphi[x/y], \Gamma \Rightarrow \Delta}{\exists_x \varphi, \Gamma \Rightarrow \Delta} \ (L_{\exists}), y \not\in fv(\Gamma, \Delta)$	$\frac{\exists_x \varphi, \Gamma \vdash \Delta}{\varphi[x/y], \Gamma \vdash \Delta} \ (\textit{skolem}), y \not\in \texttt{fv}(\Gamma, \Delta)$

Summary - Gentzen Deductive Rules vs Proof Commads

right rules	PVS commands
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \land \psi} \ (R_{\wedge})$	$\frac{\Gamma\vdash\Delta,\varphi\wedge\psi}{\Gamma\vdash\Delta,\varphi\;\Gamma\vdash\Delta,\psi}\;\;(\textit{split})$
$\frac{\Gamma \Rightarrow \Delta, \varphi_{i \in \{1,2\}}}{\Gamma \Rightarrow \Delta, \varphi_1 \lor \varphi_2} \ (R_{\lor})$	$\frac{\Gamma\vdash\Delta,\varphi_{1}\lor\varphi_{2}}{\Gamma\vdash\Delta,\varphi_{1},\varphi_{2}} \ (\textit{flatten})$
$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \rightarrow \psi} (R_{\rightarrow})$	$\frac{\Gamma\vdash\Delta,\varphi\rightarrow\psi}{\varphi,\Gamma\vdash\Delta,\psi} \ (\textit{flatten})$
$\frac{\Gamma \Rightarrow \Delta, \varphi[x/y]}{\Gamma \Rightarrow \Delta, \forall_x \varphi} \ (R_\forall), y \not\in fv(\Gamma, \Delta)$	$\frac{\Gamma\vdash\Delta,\forall_{x}\varphi}{\Gamma\vdash\Delta,\varphi[x/y]} \hspace{0.1 cm} (\textit{skolem}), \hspace{0.1 cm} y \not\in \texttt{fv}(\Gamma,\Delta)$
$\frac{\Gamma \Rightarrow \Delta, \varphi[x/t]}{\Gamma \Rightarrow \Delta, \exists_x \varphi} \ (R_{\exists})$	$\frac{\Gamma\vdash\Delta,\exists_{x}\varphi}{\Gamma\vdash\Delta,\varphi[x/t]} (\textit{inst})$

Table : LOGICAL RIGHT RULES VS PROOF COMMANDS

Universidade de Brasília (日) (同) (日) (日)

э

Gentzen Calculus inference rules vs PVS proof rules

	(hide)	(copy)	(flatten)	(split)	(skolem)	(inst)	(lemma)
							(case)
(Ax)			×	×			
(L_{\perp})			×	×			
(LW)	×						
(LC)		×					
(L∧)			×				
(L∨)				×			
(L_{\rightarrow})				×			
(L∀)						×	
(L∃)					×		
(RW)	×						
(RC)		×					
(R∧)				×			
(R _∨)			×				
(R_{\rightarrow})			×				
(R∀)					×		
(R _∃)						×	
(Cut)							×

× Universidade de Brasilia MOTIVATION: FORMALIZATION - PROOFS & DEDUCTIO 00000000 00 ORMAL PROOFS — PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM -

GCD algorithm correctness - Exercise 3

See the files gcd.pvs in:

or

www.mat.unb.br/~ayala/gcd.pvs / prf

www.cic.unb.br/~ayala/gcd.pvs / prf

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTION 00000000 00

Verification of algorithmic properties - Exercise 3

```
gcd(n, m) : RECURSIVE nat =
    IF abs(n) = abs(m) THEN abs(n)
    ELSE IF (n = 0 OR m = 0) THEN abs(n+m)
        ELSE IF (abs(n) > abs(m)) THEN
            gcd(abs(n)-abs(m), abs(m))
        ELSE gcd(abs(m)-abs(n), abs(n))
        ENDIF
    ENDIF
    ENDIF
    ENDIF
    ENDIF
    ENDIF
    ENDIF
```

It works? Does this specification compute correctly the ''GCD'' of the definition?

MOTIVATION: FORMALIZATION - PROOFS & DEDUCTIO 00000000 00 Formal proofs — Proofs in the Prototype Verification System -

Verification of algorithmic properties - Exercise 3

Conclusions

- Nowadays, computational logic is intensively applied in formal methods.
- In computer sciences, a reasonable training on "computational" logic should focus on derivation/proof techniques.
- Understanding proof theory is essential to mastering proof assistants:
 - to provide mathematical proofs of robustness of computational systems and

Universidade de

э

A D F A B F A B F A B F

- well-accepted quality certificates.
- The deductive framework proof assistant is important but irrelevant.

Future Work

- A myriad of elaborated mathematical theorems are to be formalized.
- Termination analysis including more sophisticated termination semantics such as the one based on the *size change termination* principle.
- New mechanisms to apply the theory to verify rewriting based specifications.

Motivation: formalization - proofs & deduction 00000000 00 ORMAL PROOFS — PROOFS IN THE PROTOTYPE VERIFICATION SYSTEM - 00000000

Developments of the GTC at UnB - References

Figure : The Grupo de Teoria da Computação at Universidade de Brasília

Formal proofs — Proofs in the Prototype Verification System -000000000

The Abstract Redution Systems Hierarchy - ars

Motivation: formalization - proofs & deduction Formal proofs — Proofs in the Prototype Verification System 00000000 00 00 00

Developments of the GTC at UnB - References

Andréia Borges Avelar, André Luiz Galdino, Flávio Leonardo Cavalcanti de Moura, and Mauricio
Avala-Rincón.
First-order unification in the PVS proof assistant.
Logic Journal of the IGPL, 22(5):758–789, 2014.
A. L. Galdino and M. Ayala-Rincón.
A Formalization of Newman's and Yokouchi Lemmas in a Higher-Order Language. Journal of Formalized Reasoning, 1(1):39–50, 2008.
A. L. Galdino and M. Ayala-Rincón.
A Formalization of the Knuth-Bendix(-Huet) Critical Pair Theorem. J. of Automated Reasoning, 45(3):301–325, 2010.
A. C. Rocha Oliveira and M. Ayala-Rincón.
Formalizing the confluence of orthogonal rewriting systems. CoRR, abs/1303.7335, 2013.

A. C. Rocha Oliveira, M. Fernández, and M. Avala-Rincón.

Completeness in PVS of a Nominal Unification Algorithm. In *Pre-proc. LSFA*, 2015.

